r—
{

AN OBJECT ORIENTED ANALYSIS METHOD
FOR Ada AND EMBEDDED SYSTEMS

THESIS

Steven G. March
Captain, USAF

AFIT/GCS/ENC/R9D-1

DiSrargi——
—

L VTICN STarziiTNT X
— . 22 NT X
Aporoved fer purlic

; relcase|
Dismbunes Unizmited

———

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

89 12 14 009

SR mm B S mR B mm > S gm

ATTT/GCS/ENC/89D-1

AN OBJECT ORIENTED ANALYSIS METHOD
FOR Ada AND EMBEDDED SYSTEMS

THESIS

Presented to the Faculty of the School of Engineering
of the Air Force Institute of Technology
Air University
In Partial Fulfilliment of the
Requirements for the Degree of

Master of Science in Computer Engineering L
‘ O
[T

do

Steven G. March. B.S. -

Captain, USAF By
O

e —— ..

——

December. 1989

Approved for public release: disteibution nnlimited

Dirt ‘
A1

o I
SR

T s R
LeTCe .

Acknowledgments

This thesis could not have been possible without the help and encouragement o
a number of people. First, I'd like to thank my thesis advisor. Maj David Umphicess.
for his guidance. patience, and understanding during the course of this research. O
discussions gave me the insight and perspective to pursue what at times seemed an
nnpossible goal. T would also like to thank my committee members. Lt Col Johy

Valusek and NMaj James Howatt for their constructive critiques and ideas.

A special word of thanks goes out to Don Princiotta. His friendship and i

was an invaluable asset in the form of resear -h leads and honest criticism.

Finally. but 110st importantly. my deepest gratitude to my wife. Dianne. o
constant encouragernent. support. and understanding enabled me to apply the ellor

needed to accomplisn this thesis.

Steven G, Nooren

R e h wWe S e

Table of Contents

1)11“1

Acknowledgmentso o L i
Table of Contents 1
Listof Figures L o oL Lo Vi
Listof Tables N
Abstract . . . oo . K
I. [ntroduction oL Lo
1.l Background oo 1-1

1.2 Problem Definition oo 1-3

1.3 Scope [-3

l.4 Approach and Overview -1

1.4.1 Review ¢l Current Analvsis Techniques. . . . 13

1.4.2 OOA Method Development. -5

1.4.3 Require = ~~*s for an OOA Tool. I

.44 Method ation.o |6

1.5 Maximum Expected Gain -7

1.6 Sequence of Presentation -7

1. Literature Survey Lo 2
2.1 Object-Oriented Techniques in the Design Phase 2

2.1.1 Object Model. . . 0 . 0000000 22

2.1.2 Object-Oriented Design (OOD). 2o

i

2.2 The Definition Phase 0L
2.2.1 Software Requirements Analysis.
2.2.2 Information Captured During Analysis.

2.2.3 Requirements Analysis Tools.

2.2.4 Approaches to Software Requirements Analysis.

2,25 Sumumary. ... 0L
2.3 Object-Oriented System Models
2.3.1 Translating Traditional Models.

2.3.2 “True” Object-Oriented Approaches.

[II. An Object Oriented Analysis Method

3.1 Goals of an Object-Oriented Analysis Method

3.1.1 User Orlentation.
312 EKaseof Use.
3.1.3 Information Captured.

3.1.4 Other Requirements.
3.2 General Approach to Ob-ject-Oriont('(l Analysis

3.2.1 Rolein the Life Cycle.

3.2.2 Method Tools.o
3.3 Steps ia the Object-Oriented Analvsis Method . . . L.

3.3.1 Step One: Capture the Domain Expert’s View.

3.3.2 Step Two: Add Structure to the Requirements.

3.3.3 Sample Analysis Problem.

3.1 Mapping to an Object-Oriented Destgn . . 0 0 0 . 0 .

N Requirements for an Object-Oriented Analysis Tool

t.1 Framework for OOA Tool Description.

4.2 Relationships Among Models in the Object-Oriented Analy-

sis Method

1.3 General Requirements for an Object-Oriented Analysis

Tool
+.1 Storyboards of the Object-Oriented Analvsis Tool . . .
4.4.1 Capturing Software Requirements..

4.4.2 Structuring Softwere Recuirements.

4.5 Couclusion oo

¥ Validation of the Object-Oriented Analysis Method
5.1 Analysis Problem Description

5.2 Results of Applyving the OOA Method

5.2.1 Comparison With Method Goals.

5.2.2 Comparison With Other Analysis Approaches.

33 Conclusion.o oo
VI Conclusions and Recommendations
6.1 Summary L
6.2 Conclusions oo
6.3 Recommendations.
6.4 Closing Remarks
Appendin A, Analysis of an Elevator Control Svstem
Al Purpose of Elevator Control System . . 0 0
A2 Coneept Maps . o000 0000000
A3 Story Boards o000 00000
At Event/Response List 0000000000000

A5 Known Software Restrictions.
A6 Metarequirements
A.7 External Interface Diagram
A.8 High Level Actor Object Identification
A9 Organized Preliminary Object List
A.10 Message Senders and Receivers|
A1l Documentation of Object Classes|
Bbliography . o 0000 oo
Vita oo
Vi

Pagc
A-26
A-26
A-27

A-30

List of Figures

Fignre
2.1. OOD Graphical Interface Diagrams (*Booch Blohs™)
2.2, Data Flow Diagramo
2.3, State Transition Diagram
2.1, Entity Relationship Diagram (ERD)
2.5. Concept Map of “Concept Maps™
2.6. Object Diagram of a Schedule Organizer
2.7. Coad’s Object-Oriented Framework
2.8, Shlacr and Mellor’s Information Model
3.1. Relationship of Objects and Algorithms
3.2, Concept Map: Cruise Control System
3.3. Concept Map: Cruise Control Buttons
3.1. Cruise Control Story Board: Initial Setting
3.5. Cruise Control Story Board: On Button Pressed
3.6. Cruise Control Story Board: Set Button Pressed
3.7. Cruise Control Story Board: Brake Pressed
3.2, Cruise Control Story Board: Speed Drops
3.9. External Interface Diagram 000
3.10. Cruise Control: Structure Diagram
3.1 Cruise Control: Interface Diagram . . 0 . 0 000 0000 L.
.12, Crnise Control: State Transition Diagram
513, Button: Stracture Diagram . o . 0 0 0000
S0 Batton: Interface Diagram . . 0 0 00 00000
315 Speed: Structure Diagram ..o 0000000000000

Figure

L.1. Concept Map:
4.2, Concept Map:
4.3, Concept Map:
t.1. Concept Map:
£.5. Concept Map:

£.6. Concept Map:

3.16. Speed: Interface Diagram 0.

3.17. Speed: State Transition Diagram

OOA Method
Capturing the Requirements
The Unstructured Concept Map
The Event/Response List
Structuring the Requiremnents

The Object Encyclopedia

1.7. OO0A Tool Storyboard: Main Tool

£.3. OOA Tool Storyboard: Capture Requirements Menu

1.9. OOA Tool Storyboard: Textual Information

L.10. OOA Tool Storyboard: Concept Maps

L.11. OOA Tool Storyboard: Storvboard Window

2. O0A Tool Storyboard: Event/Response List

1.13. OO0\ Tool Storyboard: Structure Requirements Menn

LLE OOA Tool Storyboard: External Interface Diagram

L15. OO0\ Tool Storvboard: High-Level Algorithm Decomposition

L16. 00N Tool Storyhoard: Potential Object List

v AT CON Teal Starvhoard: Message Senders/Receivers o0 0 00 0

LIS 0O0A Tool Storyboard: Object Encyvelopedia .0 00 0 0 00 0 .

19, 00N Tool Storyboard: Structure Diagram

1200 00N Tool Storyboard: Interface Diagram 0 . ..

20 00A Tool Storvhoard: Highlighting Incoming Message o0 . L.

122, 00N Tool Storvboard: State Transition Diagram

5.1 Schednle and Control Flevator: Elevator Essential Model o 0 0 L.

D20 Store and Display Request o000 0000000000

e
—
(£

Vil

|

Fieure

3.3, Control Elevator

5.1. Schedule Elevator

AL Overall Elevator Control System

A2, Scheduling Algorithm

A3, Elevaior Components

At Elevator Motor
A5 Elevator Floor Sensors . . . 0
A6, Elevator Control Panel 0
A7 Elevator Location Panel 0
AR Elevator Weight Sensor00 000
A Elevator Request Panel .00 00 00000

A10.Story Board: Idie Elevators

ALl Story
A2 5tory
A3.Story
A1 Story
V15 Story
AIs Story
AT Story
AN Story
AT9.Story
A20Story

A2LStory

Board

Board:
Board:
Board:
Board:
Board:
Board:
tsoard:
Board:

Board:

Board:

Passenger Presses Destination Button . . .
More Summons Requests
Elevator Arrives at Floor 3.
Flevator Overload
Elevator Load taghtened . 0 0 00 .

Elevator Passes Floor 6 . 0

Elevator Arrives at Floor 22

N.22 Flevator Control System Fxternal Interface Diagram

A28 Flevator Control System: Structure Diagram . . 0 0 L.

A2 Elevator Control System: Interface Diagram 0.

A25 Flevator Control Svstem: State Transition Diagram . . .

Elevator Arrives at Floor 36

[)(l‘__"('

[tenre

A26.F qor: Structure Diagram
N2 Elevator: Interface Diagram
A2X Elevator: State Transttion Diagram |
A29.Control Panel: Structure Diagram
A30.Control Panel: Interface Diagram .

A3t .Control Panel: State Transition Diaeram .

A32 A ddress: Structure Diagram .
A3 Address: Interface Diagram

A3 Address: State Transition Diagram

-
)
v

55 Divection: Structure Diagram
A36.Direction: Interface Diagram

A 37 Direction: State Transition Diagram
AN Elevator ID: Stracture Diagram .
39.Elevator ID: Interface Diagram

A Elevaror [D: State Transition Diagram
Nt Elevator Motor: Structiure Diagram .

A2 Elevator Motor: Interface Diagram

A 3 Elevaror Motor: State Transition Diagram
At Foor Number: Strueture Diagram

A Floor Namber: Interface Diagram |

Vot P loor Number: State Transition Diagram
AT Hoor Sensors Stracture Diagram
AisFloor Sensor: Interface Diagram

A9 Floar Sensor: State Transition Diagram
NSO Lo Reaister: Stiacture Diacram

ASUInonr R

waister: Interface Diavram

AS2 Interrapt Nambers Structure Diagram

-
-——

-
_

-
v

A6
A-O
A5
A SN
A-60
A-61

A-61

A-63

A-63

A6

A-66
A-O7T
A-67
A-64

A

AT

[ioure

A3 dnterrupt Number: Interface Diagram

A tInterrupt Number: State Transition Diagram
A55.List: Structure Diagram

A6 List: Iuterface Diagram

AS5T.List: State Transition Diagram

AR Location Panel: Structure Diagram .

.59 Location Panel: Interface Diagram

A0 Locatiow Panel: State Transition Diagram
A61L.Output Register: Structure Diagram
A.62.0utput Register: Interface Diagram
A63.Summons Request: structure Diagram .
A6 Summons Request: Interface Diagram
A632.Summons Request: State Transition Diagram
AL66. Weight: Structure Diagram

ABT. Weight: Interface Diagram

A6R Weight Sensor: Structure Diagram

A6 Weight Sensor: Interface Diagram

A T0.Weight Sensor: State Transition Diagram

w1

A-NG
ALSR
A-x9

AN

List of Tables

Table Page
A.l. Elevator Control System Interrupt Numbers A-2T
A20 Elevator Contro: System Register Addresses 0 0 0 0 0 . A2
A 3. Eievator Motor Control Word Format A-29

XN

AT GUSTENC »uD-!
7
Abstract
Oblect-Qrienzed Desizn +OO0D) has become a popular approach to soiroave
fevelepment wirh Ada. One of the difficulties in applying OOD is that the infor
cwaton availabie o the designer {the product of requirements analvsisy is tvpically
oresented ina torm inappropriate to OOD. Traditional requirements anaivsis ruois

recz. data flow diagrams) organize the software requirements based upon the fune-

twns the svstem must perform. Recent research suggests that an ofject-ornted

approach to requirements analvsis is a more natural lead-in to OOD.

The goal of this rhesis was 1o defiue the toois. steps. amd henristics Do o
obiectooriented analvsis 1OOA Y method of modeling software requirements. The
ciotce of tuols used to capture the requirements makes the method particuiariy
suitabie for use when developing embedded systems. The method emphasizes com-

mticarion with borh the domain expert and the designer.

caprure the software requirements using unstructured tools such as concept maps.
storvboards. and a list of external events to which the system must respond. The
second phase involves structuring these requirements into a model based upon the

soltware objects.
-

The thesis also addressed the possibility of automated support for the OOA
method. and proposes an OOA tool to assist the analvst. The OO method was

apoted toa sample requirements analysis probiem to demonstrate the merhod’s

Finl

AN OBJECT ORIENTED ANALYSIS METHOD
FOR Ada AND EMBEDDED SYSTEMS

L. Introduction

The object-oriented approach to software development is entering its adoles-
cence. Discussions about the object-oriented paradigm now routinely appear in the
computing literature, as practitioners recognize its potential benefits in develop-
ing reliable, maintainable software. This thesis examines the application of object-

oriented techniques during the requirements analysis phase of software development.

1.1 Background

In the 1970s, the Department of Defense (DoD)) experienced first-haud the
symptoms of the software crisis: unpredictable development costs and schedules,
poor software reliability, costly maintenance, and delivered software failing to mcet
the needs of the user [Booch. 1983:6-7]. As one step toward resolving this predica-
ment. the DoD sponsored the design of a new programming langnage. Ada. 1o he
nsed for the development of embedded systems applications for the militarv. The
Ada language includes features (e.g. strong typing, packages. and tasks) which aid

software engineers in managing the complexity of large software svstems.

The availability of these modern language constructs in Ada required software
engineers to formulate new methods to utilize them. Russell Abbott [Abbott, 1953]
and Grady Booch [Booch, 1983] introduced the use of object-oriented techniqres as
i means of applving the new features of Ada to combat <oftware complexity. The
strneture of software developed with an object-oriented approach is patterned on

the ohjects evident in the real-world problem. A designer creates software entitios to

implement these objects. The resulting similarity between the structure of the prob-
lemm and that of the solution tends to produce a more natural design than a design
mapped only into the predefined data and control structures of a tvpical program-
ming language. The object-oriented approach to software development is unique in
its ability to support the principles of abstraction, information hiding, and maod-
nlarity [Pressman, 1987:334] which lead to more understandable and maintainable

software.

This original Object-Oriented Design (OOD) method called for the develop-
ment of a textual informal strategy of the solution to be used as the foundation for
the design phase. From this informal strategy, the designer identified the relevan
objects and operations required for the solution of the problem. Unfortunately. nei-
ther Abbott nor Booch gave much guidance for writing the informal strategy. In
practice, the typical result is a vague, unstructured paragraph which serves as a frail

basis for the design.

Recent research suggests the use of object-oriented techniques in the earlier
phase of requirements analysis provides a more coherent approach to object-oriented
development [Pressman, 1987, EVB, 1989, Ladden, 1989]. A complete life cyvele
object-oriented methodology provides a stronger framework for the application of

Ada in the management of software complexity.

A recent thesis by Capt Patrick Barnes [Barnes, 19%8] proposed an Object
Oviented Design methodology based on the concepts of decision support systems.
Barnes suggests that a graphical concept map may be a better means of descrih-
ing the solution strategy than Booch's informal strategy method [Barnes. 1935:3.51
and recommends research into the use of concept maps in the requirements phase.
This thesis further explores the idea of using graphical object-oriented tools in the

requiremnents analysis phase as a substitnte for the textnal informal strategy.

1.2 Problem Definition

The objective of this thesis is to develop an Object Oriented Analysis (OON\
method to model software requirements. This analysis method will provide guidelines
for 1dentifying the objects in the problem space, their attributes. and the relation-

ships among the objects. The specific objectives of this thesis are to

a. Determine the requirements of an OOA method.
b. Define the steps of an OOA method to represent the problem space.

c. Identify the requirements for a software tool to assist an analyvst in
applving the OOA method.

d. Validate the OOA method by applying it to a sample requirements
analysis problem.

1.3 Scope

The requirements analysis method developed in this thesis assumes that the
analyst has expended prior effort in defining the overall system requirements. There-
fore. the method considers only the software component of a larger system. The
method also ignores the analysis of factors such as cost, effort. schedule. or testing:

only the behavioral requirements of the software are addressed.

The method concentrates mainly on the analysis. rather than the determina-
tion. of requirements. In other words, the method assumes that the user has made
an effort to identify the needs of the system, and concentrates on capturing and
documenting these requirements in a model which forms the basis for the software
design phase. In reality, it is often difficult to separate requirements determination
and analvsis into distinct phases. Therefore, the techniques of any analvsis method
may have to be applied iteratively until a satisfactory set of requirements can he de-
fined. However. tools such as rapid prototyping. which are helpful for requiretnents

determination. are not specifically included in the OON method. The result of the

OOA method i1s a model of the system which can be understood by both the user

and the designer.

Since Ada was originaily developed to program embedded systems. the OOA
method will concentrate on this arena as well. These systems seem well suited to
object-oriented design, with concrete physical objects that require modelling in soft-
ware. Embedded systems also tend to have requirements that can be identified carly
in the life cvcle. with a fairly well defined hardware/scftware interface. Althongh
the OOA method is aimed primarily towards embedded systems, many of the con-
cepts presented here apply as well to general software development. However. the
method provides only limited support for identifying reusable objects or potentially

concurrent objects and operations.

During the development of the OOA method. consideration was given to the
complexities associated with specifying large software systems. As the complexity
and size of the software increases, it becomes important to view the software from
various levels of abstraction. The OOA method therefore shonld support the layering

of objects into hierarchical levels of abstraction.

The method assumes that object-oriented techniques will be used in the de-
sign phase. and that Ada will be the implementation language. Ada is not a “true”
object-oriented language in that it doesn’t fully support concepts such as inheritance
and dynamic binding; however, Ada can still support a form of object oriented pro-
gramming. The OOA method addresses object oriented concepts as Ada supports
them. Given these restrictions, the analyst can use the OO\ method in combination
with OOD when the implementation language i1s one that supports data encapsula-

tion and information hiding. such as Ada or Modula-2.

1.0 Approach and Overview

This rescarch project consisted of four phases:

1. An investigation of current analysis techniques.

2. Formation of the tools and steps of the OOA method.
3. Description of an OOA tool to assist the analyst.

1. Validation of the method.

These phases were somewhat overlapping. Examining current analysis tech-
niques prompted new ideas about the requirements and design of the OOA mathod.
Also. the process of developing the OOA method naturally identified many of the

requirements for the corresponding tool.

1.4.1 Review of Current Analysis Technigues. The first step in formulating
the OOA method was a review of the literature to identify the current state of
practice. Since at the outset of this project little research had been accomplished in
the application of object-oriented techniques to software requirements analysis. the
review covered a number of topics surrounding the issue. The first subject was the
application of object-oriented techniques during the later phase of software design.
The second area addressed was the software definition phase. This examination
identified the information captured during requirements analysis, and the major
tools and approaches used to capture this information. Finally. the review considered
the attempts that have been made in applying the object-oriented paradigm to the
definition phase. Chapter II of this thesis discusses the results of this literature

review.

1.4.2 004 Method Development. The requirements for the object-oriented
analysis method were based on the information gathered during the literature review.
The review of the OOD process identified the information needed in the requirements
model to successfully apply object-oriented design. The specific tools and steps of
the OOA method were then developed from these requirements. The regnirements

for. and steps of. the OOA method are described in Chapter 111

A good deal of creativity was required to conceive the steps of the OOA method.
A promising starting point was to first conceive the end components of the object-
oriented mode! »f the software requirements. These model components were selected
to represent all of the information required for an ohject-oriented design. Another
factor influencing the tool selection was the need to define a model which could be

casily understood by both the users and developers of the software.

With this end result defined, attention was then directed toward identifying the
steps and heuristics that go into developing the model components. These guidehnes
were defined in sufficient detail to enable an analvst to identify the objects and

operations of the problem at various levels of abstraction.

1.4.3 Requirements for an OOA Tool. As the steps and tools of the OOA
method were defined, consideration was given to their automated support. Par-
ticular attention was given to .he representations, operations, memory aids. ane
control aids (RONMC-s=e [Sprague and Carlson, 1982]) of a tool to support the OO\
method. Concept maps identified the elements of the OOA method and the relation-
ship between the method steps. Once the potential support areas were identificd.
the proposed OOA tool was described through story boards. The description of an

object-oniented analysis tool is outlined in Chapter IV,

.

{.4.4 Mecthod Validation. The concepts defined in OOA method were vali-
dated thronugh application of the method on a sample problem. The problem se-
lected to validate the method needed to be of sufficient size and complexity to give a
reasonable demonstration of the method, yet small enough to handle in an academic
environment. The classic “elevator problem” was chosen for the task of evaluating
the method. This problem. originally used in a workshop sponsored by the Asso-
ciation of Computing Machinery (ACM) [Yourdon. 1989:631]. calls for the analrsis
of the software requirements for an elevator control system for a building with four

clevators serving 10 floors.

1-6

The tools and guidelines of the OOA method were applied to analyze and
model the software requirements for the elevator control system. The results of this
exercise were compared against the method goals identified in section 3.1. Also.
since the elevator problem has been previously analyzed using different requirements
analysis methodologies, the application of the OOA method on this same problem
enabled a comparison to be made between the OOA method and previous. function

based analysis methods. The results of this evaluation are described in Chapter V.

1.5 Maxrimum Erpected Gain

The result of this research 1s a method defining the steps needed to model the
problem space in an object oriented manner. This model provides a more straight-
forward lead-in to Object-Oriented Design than current function-based tools such
as data flow diagrams, thus enabling a better object-oriented design. The method
also provides the analyst with more guidelines and structure than the informal strat-
egy of Booch [Booch, 1983] and Abbott [Abbott, 1983], while still retaining a more

unstructured communication with the domain experts.

A more straightforward method of applying object oriented techniques in the
software analysis phase should result in wider research and application of the object-
oriented paradigm. Additionally, the OOA method and tool could be used to support

instriction in requirements analysis, OOD, and the proper use of Ada constructs,

1.6 Sequence of Presentation

The chapters of this thesis follow the phases of research identified in the Ap-
proach and Overview section. Chapter 11 lays the foundation with a review of the
current literature in the broad areas of requirements analysic and the object-oriented
paradigm. Chapter III identifies the requirements. tools. and steps of the Object-
Oriented Analysis method. Chapter IV provides an outline for a tool to support

the analyst in applying the OOA method. Chapter V provides an evaluation of the

method by applyving it to a sample requirements analysis problem. Finally. Chap-
ter V[identifies conclusions gathered from this research and recommendations for

further study.

i
i
i
_
i
i
]
i
]

-

II. Literature Survey

The growing number of articles, books. and object-oriented langnages in recent
vears implies that the object-oriented paradigm is more popular than ever. The trend
in the literature also suggests an expansion of the paradigm from the coding and
designing activities into the earlier activity of requirements analysis. This chapter
begins by discussing the application of object-oriented techniques during the design
phase. It then reviews popular approaches to requirements analysis in order to
identify the tools and methods used in capturing software requirements. The chapter
closes with a discussion of recent attempts to apply object-oriented technigues to

requirements analysis.

2.1 Object-Oriented Techniques in the Design Phase

One of the perceived benefits of the object-oriented paradigm is its application
of modern software engineering principles to deal with the complexity of large prob-
lems. The result 1s a more natural mapping between the real world problem {the

“problem space™) and the solution represented by the software.

Other popular design methods tend to carve the architecture of software syvs-
tems along either functional or data-struciure lines [Booch, 1987b:37] These methi-
ods work fine when used with older languages whose primary structuring mechanism
i~ a procedure. However, these methods fail to utilize the structuring capabilitios
of newer langnages. such as the Ada package construct or the object structure of
Smalltalk. that aid in the management of complexity [Booch. 1987h:37]. Pressman

<nmarizes the promising aspects of object-oriented design (OOD):

The nnigne nature of object-oriented design lies in its ability to build
npon three important software design concepts: abstraction, information

hiding. and modularity. All design methods strive for software that ex-
hibits these fundamental characteristics, but only OOD provid 's a mech-
anism that enables the designer to achieve all three withont complexity
or compromise. [Pressman. 1937:331]

This section will define an object model to be nsed thronghout the remainder
of the thesis. and portray object-oriented design (OOD) as it applies to prograniming

n Ada.

201 Object Model. An object-oriented perspective views the world i tein-
of objects and behaviors. Work 1s accomplished when an object sends a messiuwe
to another object, asking it to perform some behavior. Fach object maintains
some state mformation which may be updated when an object performs a behavior
Barnes, 1983:2.13]. The state of higher level composite objects can he deseribed in

terms of the state of each of its component objects.

The definitions of terms such as object and behavior differ somewhat anmone
authors. There seems to be three major reasons for the differences: the domam
of nse (information svstems vs embedded svstems), the purpose of the discnssion
(practical vs theoretical). and the support of the langnage nsed to implement the
concepts.,

[n an embedded svstems view of OCD, the objects come primarily from the
phivsical entities of the problem. Most objects model the state of each of these phivst-
cal entities. Other types of systems take a more liberal view of an object. Information
svatems often expand the view of an object to entail relationships hetween datairens,
identified when the dara el 1s normalized. Shlaer and Mellor inelude in their ol
et definition any abstract concept in the real world [Shlaer and Mellor, 193067

Thev ao <o far as to identify different tvpes of objects:

o A\b-tractions of tangdhle things frotn the reat world.

o Abhstractions of 10l s of entivies,

[
1o

e Abstractions of specifications or quality criteria.
o Collections or aggregations of tangible items.

e Stepsin the execution of a process.

Au object model defined by Bralick [Bralick. 1988} provides a more theoretical
foundation for the paradigm. lHowever, Barnes identifies two weaknesses in using
this model o design. First, it tacks an explicit method of describing the interac-
nons of objects. Second. the model's fiexibility in representing entities makes it 1oo
cnibignons to provide a designer with a clear path for design [Barnes. 19352207
Barnes defined an object model aimed at the design phase, based on the work by

Bralick and a more restrictive model based on Smalftalk objects.

Presented here is the object model developed by Barnes. Since the emphasis
ol this thesis is toward object-oriented concepts as applied toward the Ada langnage.
tseems litting to also include characteristies of objects introduced by Grady Booch
Booch, 19567 whao applied the object-ortented paradigm to development with Adda.
ioeether, these deseriptions will provide a basis for W ntifving the information 1hat

tinst be captured during requirements analvsis.

200000 An Object Model for Design. Barnes's object model is charac-
terized by objects) elasses of objects. operations, attributes, and relations amony
1 !

objeet classes Barnes, 1982:2.250 Barnes summarizes his object model in the fol-

fowing terms:

o \n ohjeet is a umque entity defined by attribntes which serve 1o
ilentify the objeet and relations which assaciate it with other ob-
ject<cattributes, and operations. Reqguired attribites are name.
bebavior domain, and classe Relations inelnde sets of operations.

components, actors, and servers,
o \n uftrihute identifies an object or operation.

o \ relat on represents an association of an object or operation with

cther svstem objects, operations, or relations,

—_—

e \n operafion 1s the description of how an object performs some
behavior. Required attributes are name and algorithm. Relations
include sets of actors. servers. arguments, and modified objects.

e A\ class is a complete design of an object which may be used as a
template from which other objects derive their characteristic struc-
ture and function. [Barnes, 1988:3.1]

In his model, Barnes distingnishes between the terms “behavior™ and “opera-
tion”. He defines a behavior as a more informal description of an object’s functional-
ity in response to a stimulus from another object, while an operation is a more formal
et of algorithms defining how the behavior is performed [Barnes. 193%:2.21]. Barnes
also dentifies the relationships between objects by classifving objects as actors or

servers. depending on the direction the message is passed [Barnes. [988:2.25],

This object model serves as a foundation for the characteristics of an object.
More specific aspects of the paradigm as implemented by Ada are considered by

imcluding the detinitions used by Booch.

2.1.1.2 Booch's Characteristics of an Object. Booch defines an ohiject
i general terms as “an entity whose behavior is characterized by the actions that it
~uffers and that it requires of other objects™[Booch. 1986:211]. e goes on to provide

a more detailed analysis of an object’s characteristics.

State. The state of an objiect denotes the value of the object at &
point in time. This value includes the state of any sub-objects contained in the object
inquestion (Booch, (1986:215]. For example. the state of a windowing environmen:

mmclides the srate of each window running in the environment

Actions and Objects. An object may require operations from otlier
ohiject<oor it may serve the requests of other objects. These operations on an ohject
<crve to modify or examine the state of the object. Booch identifies three elasses of

opetations. Constructoroperations modifs the state of an object. Selector operatians

[

examine the current state of an object. [terator operations visit all sub-components

of a complex object in turn.

An object may be classified by the way it relates to other objects. Actorobjects
operate on others but are not operated on. Serrver objects are operated on by others.
but never inflict operations on others. Agent objects perform some operation on
behalt of other objects. An agent is both the receiver and initiator of operations

Booch. 1986:216].

Classes of Objects. A class is a set of unique objects that share
the same characteristics. Each object in the class has the same set of operations as
other objects in the class. A class is characterized by a set of values. and a set of
operations applicable to objects of that class [Booch. 19%7a:21]. A svstem may pos-
sess a hierarchy of classes, where a metaclass defines a set of classes: however, Ada’s

<npport for implementing this hierarchy is somewhat limited. [Booch. 196:216]

Object Names. Names are used to identify objects. Each ob-
ject has at least one name, and could be referred to by multiple names (aliases

“3«)()(‘}). 1()‘2(/21()]

Visibility of Objects. Objects should be restricted in their visibil-
itv. ~o that they may collaborate only with other objects that are logically required
to implement it’s design. Unrestricted visibility allows any object to operate on any
other object. Limiting the visibility makes the svstem more understandable and

modifiable [Booch. 19R6:216].

Views of Objects. An object may be viewed from two differem
perspectives: inside or outside the object. The outside view represents the ab tract
heliavior of an object -its interface with the rest of the world. The inside view reveals
the details of how the object and its operations are implemented {Hooch, 1986217

Other object< only see the ontside view of an object.

2.1.1.3 Summary. Together. Barnes’ object model for design and Booch '~
characteristics of an object define a framewcrk for an Ada view of the object-oriented
paradigm. This model also serves as a starting point for identifving the information
that must be captured during software requirements analysis. The next section dis-

cusses the object-oriented design method proposed for Ada by Grady Booch.

2.1.2 Object-Oriented Design (OOD). The foundations of applying the object-
oriented paradigm to the design phase date back at least as far as Parnas’ discus-
sion of information hiding [Parnas, 1972]. However, it wasn't until the develop-
ment of Ada and object oriented languages that interest mounted in applying the
paradigm in the design phase. All languages are object-oriented to some degree
[EVB, 1985, Bralick, 1988:2.2]. However, it is a language’s support for data abstrac-
tion, information hiding, and to a lesser extent dynamic binding and inheritance
that makes it suitable for object-oriented programming [Pascoe. 1986:110]. Although
Ada is weak in the areas of dynamic binding and inheritance [Pascoe, 1986:142], it
strongly supports the concepts of abstraction and information hiding. making it

suitable for implementing an object-oriented design [Booch. 1986:216].

2.1.2.1 Booch’s Object-Oriented Design Method. The version of object-
oriented design (OOD) made popular by Grady Booch [Booch. 1983] relies on the
rescarch of Russell Abbott. Abbott’s approach to software design began with tie
development of a textual “informal strategy” [Abbott, 1983). Booch applied thix

approach 1 an object-oriented framework to develop his initial version of OOD.

“Traditional” OOf). Booch's initial version of QOD involved the

following steps [Booch, 1983, EVB, 1985, Pressman. 19R7]:

L) Define the problem. The use of analysis tools is appropriate at this
point to define the problem space [Booch. 1983:11]. Some advocates

2.6

recommend stating the underlying problem in a singie. grammati-
cally correct sentence [EVB, 1985, Pressman, 1987}.

Develop an Informal Strategy. English prose is used to define a solu-
tion using the terms of the problem space [Booch, 1983:42]. This in-
formal strategy specifies the relationships among objects that make
up the solution [EVB. 1985:1.4].

Formalize the Strategy. This step involves four sub-steps. First
objects and their attributes are identified from the nouns and noun
phrases in the informal strategy. Next, operations on the objects are
identified from the verbs and verb phrases in the informal strategy.
Third, interfaces between objects are established. and expressed in
a graphical notation (see the example in figure 2.1). Finally. the
operations are implemented, potentially applying the OOD process
recursively on the operations. [Booch, 1983:12-13]

Booch and his followers have since modified their approach somewhat. resulting

in less of a dependence on an informal strategy to identify objects and operations.

“Contemporary” OOD. The steps in this “contemporary”

proach to OOD are listed below [Booch, 1986, Booch, 1987a. Booch. 1987h]:

1)

[dentify the objects and their attributes. Although nouns used to
describe the problem space are mentioned as a possible guideline to
identifying objects, no mention is made of developing an informal
strategy[Booch, 1987h:438].

[dentify the operations. This step characterizes the behavior of each
object or class by identifying the operations that affect each object
or class and the operations that each must initiate [Booch. 1987h:48-
19].

Fstablish the visibility of each object. The static visibility of each
object is defined in relation to other objects in the svstem. using
the graphical notation identified earlier [Booch. 1987h:49].

Fstablish the interface of cach object. The interface of each object
or class is specified nsing some suitable notation. such as an Ada
package specification. This interface is the view of the object or
class to other objects in the software system [Booch, 1937h:19].

to
'
-1

ap-

™ GBS O a5 h N G W e

/\\ Tree_Package

C Tree_Type)
| GetJnjtial |
[[s Single_Leaf J
1
L__split]

Throw_Away

|

Pile_Package

1

gD

Is Not_Empty
1

[Put]

[Put Injtial |

| Take |
l

Count _Leaves_On_
Binarv_Tree

e

Counter_Package

(Conntf‘rL.Tvpe)
[Display I

| Increment B
—

L Zero |

Figure 2.1 OOD Graphical Interface Diagrams (“Booch Blobs™) [Booch, 1983:75

CE B B BN Gh BE .

3) Implement each object. Each object is implemented using a
suitable language feature. The object may be further decom-
posed by recursively reapplying the OOD process, or composed
in a bottom-up fashion from existing lower-level objects or classes
[Booch, 1987b:49].

This version of OOD minimizes the emphasis on the informal strategy and.
instead. emphasizes the use of traditional analysis tools to define the problem
[Booch. 1986. Booch, 1987b, Booch. 1987a:47]. Ladden summarizes reasons for the

shift away from the informal strategy approach to OOD:

The viability of the well-known technique of developing an “informal
strategy’ by creating a narrative description of the problem, and then
selecting the objects, operations and attributes of the system from the
nouns, verbs, adjectives, and adverbs of this narrative description is
questioned. It inherently lacks rigor due to the impreciseness of the
English language; the approach appears to have been disregarded by
its originator; and its suitability for large projects has been criticized.
[Ladden, 1989:87)

Object-Oriented Design as known today is not a full life cycle method
[Booch. 1986:84]. OOD assumes that the problem space has been previously defined
aund organized using some form of analysis tools. Two approaches to this analyvsis
are possible. A traditional analysis method may be applied to the problem and theu
translated into an object-oriented representation. An alternative is to use object-
oriented techniques throughout the life cycle [EVB, 1989:15]. Both approaches will

be considered in the last section of this chapter.

As defined in chapter I. the primary goal of this thesis is to develop an object-
oriented approach to the analysis phase. This object-oriented requirements analysis
[OORN) activity will precede the OOD process to achieve a more complete life
cvele methodology. The development of this Object-Oriented Requirements Analysis
method assimes than an object-oriented approach similar to the “contemporary”

OO approach will be nsed during the design phase.

2.9

2.2 The Definition Phase

them in a specification [Valusek and Fryback, 1987:117].

the requirements of a software system [Gomaa and Scott. 1981].

problem space. This model serves a number of purposes. The model

plementation [Gane and Sarson, 1982:9].

2-10

As mentioned at the outset of this chapter, the object-oriented paradigm seems
to be working its way backward in the life cycle. Whereas object-oriented techniqnes
have been practiced in the development phase for nearly a decade (an eon in the
rapidly advancing computer field!), application of the paradigm in the requirements
analysis phase is a much more recent phenomenon. This section identifies current
approaches to delineating requirements for software systems. presenting a menu of

alternative representations on which an object-oriented appreach may be based.

2.2.1 Software Requirements Analysis. The IEEE defines requirements
analysis as “the process of studying user needs to arrive at a definition of system or
software requirements” [IEEE, 1983:30]. Software requirements analysis is therefore

concerned with studying user needs to be able to define software requirements.

Valusek makes a useful distinction between requirements analysis and require-
ments determination. Requirements determination is a user-oriented process of de-
veloping a list of candidate requirements. Requirements analysis is the later process

of focusing and reconciling these possibly conflicting requirements. and detailing

Land identifies four common techniques of identifving requirements. An ana-
[vst may interview users, carry out surveys, observe the system or organization in
operation, or study documentation of the current system [Land. et al.. 1937:203].

Prototyping can also be included in this incomplete list of methods used to identify

The output of the software requirements analvsis activity is a model of the

e specifies the logical requirements without detailing a physical im-

" Iy oI N EE BN N BN B

K. R e A

titude of el

expresses preferences and trade-offs of potential approaches
[Gane and Sarson, 1982:9].

focuses attention on important features of the system while de-
emphasizing less important features [Yourdon, 1989:65].

presents a basis for discussion with the user about changes or cor-
rections to the system [Yourdon, 1989:65].

verifies that the analyst correctly understands the user’s problem
[Yourdon, 1989:65].

documents the system so that designers and programmers can build
it [Yourdon, 1989:65].

Information Captured During Analysis. The literature identifies a mul-

ements to include in a model of the software requirements. These elements

are summarized below.

2.2

veloped during soltware requirements analysis, inclnding users. designers. coders.

Information Domain. This consists of the flow, content, and struc-
ture of data. The information flow describes the manner in which
data changes as it flows throughout the system. The information
content represents the individual data items in the system. Infor-
mation structure describes how these data items are grouped into
more complex data structures [Yourdon, 1989, Pressman, 1987:142].

Functional Elements. A description of the functions the sys-
tem is to perform is included [Yourdon, 1989. Yadav. et al.. 1983.
Land, et al., 1987, Pressman, 1987:21].

Interface Characteristics. The links between the system and
the outside world are identified and described [Yadav. et al., 1988,
Pressman, 1987:47]. This may also include the existence and fre-
quency of any external events that the system must respond to
[Peters, 1987, McMenamin and Palmer, 1981:38].

Design Constraints. Any constraints on the design of the
system, including performance requirements [Yadav, et al., 1988,
Pressman, 1987:21], or “metarequirements”™ (design decisions made
up front by the user) [EVB. 1989:31].

Requirements Analysis Tools. Many different people nse the model de-

2-11

& I S W TN N BN A B e

project managers, and maintainers. Therefore, the model must promote compre-
liension and communication among these parties [Jorgensen, 1986:182]. A number
of tools are used to portray the information described in the previous section in
an understandable manner. Each tool focuses on a difierent aspect of the system.
Therefore, combinations of these tools are required to fully describe the software

requirements. Some of the more common and useful tools are listed below.

2.2.3.1 Data Flow Diagram. The data flow diagram (DFD) reveals the
processes in a system and the data flows between them. A DFD is made up of circles
representing processes, arcs portraying data flows, straight lines illustrating stoves
of data. and boxes depicting external sources or sinks of data [DeMarco. 1979:51].

An example data flow diagram is displayed in figure 2.2.

Data flow diagrams may represent different levels of abstraction of a sys-
tem. Each of the processes in figure 2.2 may be broken down and represented
with its own DFD. This concept is known as the leveling of data flow diagrams

[DeMarco, 1979:72].

2.2.2.2 Data Dictionary. The data dictionary is an organized. textual
listing of the data items relevant to the system. containing a precise definition of
cach of the items [Yourdon, 1989:189]. The data dictionary is often used to support
a DED by defining the data flows and stores identified by the diagram. The contents
of a data dictionary may varv with use. Gane and Sarson [Gane and Sarson. 1982:76]

include the following fields:

A definition of the data item.

Other related data elements.

The range of values and meanings of values for the data element.

The length of the element.

Anyv encoding used for the data.

Other editing information.

CUSTOMERY

invalid WAREDNOUSHE

orders

orders

orders

RECEIVE
ORDER

SHIP

customer name

billing
info

CUSTOMERS

INVOICES

customer name. add

BOOKS

books

books

cust. naine
invoice

COLLECT

-3
et~

PAYMEN

pavments. inqiiries

nvoices, stmts ! . .
_— ™ CUSTOMERS

Figure 2.2, Data Flow Diagram [Yourdon. 19%9:1 11]

Gain CPU

ontext switch

Resource Wait on resource

Available
Blocked

Figure 2.3. State Transition Diagram of a Process

2.2.3.3 State Transition Diagram. A state transition diagram (STD) is
used to capture the time-dependant behavior of a system [Yourdon. 1989:259]. One
common notation uses circles to denote each possible state of the system. and arcs
to represent transitions between the states. Labels on the arcs state the condition(s)
required for the state transition [EVB, 1989:163]. Figure 2.3 is an example of a state

transition diagram of a process in a simple operating syvstem.

2.2.3.4 Entity Relationship Diagram. The entity relationship diagram
(I[ZRD) was originally proposed by Chen as a tool for database design [Chen. 1976:9].
The diagram captures sema..tic information about the real world in terms of
entities, or “things”, from the real world and the relationships between them.
Analvsts use the diagrams to describe the layout of data stores in a svstem
‘Nartin and MeClure, 1985, Yourdon, 1989:233]. The basic notation of an ERD in-
chides rectangles to denote entities and diamonds to show the relationships between

them. An example ERD is shown in figure 2.1, There are varions forms of entity

Sales
Rep.

('ustomer Purchase . Order

Book ‘ Printer

Figure 2.4. Entity Relationship Diagram (ERD) [Yourdon, 1989:235]

relationship diagrams, varying mainly in the information included about the relation-
ships. For example, a one-to-many relationship may be shown with an airowhead on

the arc (as in figure 2.4). or with ‘1" and ‘M’ on ends of the arc [Yourdon. 1989:210].

2.2.3.5 Concept Map. The concept map is not a traditional tool for
requirements analysis. Instead, it was developed by Novak and Gowin as an edu-
cational tool to summarize understanding of a topic [Novak and Gowin. 1934]. The
concept map is similar to an entity relationship diagram in that it identifies imipor-
tant entities or concepts about a topic and describes the relationships between them.
The notation used in concept maps is modest. Ovals are used to denote conce it
while labeled edges identify the relationships. This simple. nnstructured notation

makes the concept map easy to apply and understand.

MeFarren has proposed the nse of concept maps as an aid to developing decision

[
N)

Promotes

Essential

Contains

Graphical
Tool

I-nhances

hetween

Relate

Under-
standing

Figure 2.5. Concept Map of “Concept Maps™

support syvstems (DSS). The concept map helps the decision maker communicate hix
understanding of the problem to others. and provides a medium for identifving any
misconceptions held by the DSS builders [McFarren. 19871, Rarnes [Barnes. [958
and Umphress [Umphress. 1988] have built on this idea. proposing the use of concept
maps as a tool for modeling the problem space during software requirements analvsis.
Barnes maintains the concept map is more descriptive than the informal stiateey
of OOD. allowing a more direct means of identifving the objects and operations ol
the problem space [Barnes. 198%:6.3]. Barnes™ proposed methodology for a full life
cvele object-oriented methodology. including the nse of concept maps. is deseribed
1 ~ection 23,12

Fignure 2.5 05 an example of a concept map describing the essence of concept

maps that are important to this thesis.

2-16

2.2.5.6 Summary. The set of tools described above is by no means
cotnplete. The tools presented are those which are widely used, or, in the case of
the concept map. show potential for use in the requirements analysis phase. Some
combination of the tools described above can be used to represent the majority of
the elements in the requirements model defined in section 2.2.2. English prose mu.y
add to or support the information presented in the diagrams. However, it is difficult
to define a complex system concisely and unambiguously with a natural langnage

alone [Martin and McClure. 1985, Yourdon. 1989, Ross and Schoman. 1977:9].

224 Approaches to Software Requirements Analysis. The selection and ap-
plication of these tools depends on the approach taken toward requirements analvsis.
Pressman claims that all requirements analysis methods are related by similar un-

derlving principles. In any analysis method, the following activities ocenr:

o [he information and functional domains of the problem must be
represented and understood by the analyst.

e The problem is partitioned such that detail is uncovered in a lavered
fashion.

o Logical and physical models of the system are developed.
[Pressman. 1987:141-142]

Requirements analysis methods differ mainly in the wayv the problem is parti-
tioned. Systems may be expressed in terms of data flow hetween svstem functions,
data structures, events and responses. or objects. While specific analvsis methiods
may use mnltiple tools to capture different views of the svstem. one of the views
tipically predominates over the others. Methods can therefore be categorized by

their approach to requirements analvsis.

2240 Data Flow Orented Analysis. Not surprisinglv, requirement s

analvas hased on data flow makes heavy nse of the data How diagram. The sv<tem

1s hroken up into the major functions required of the software. Each of these major
functions is. in turn, broken down into its subfunctions until the system is expressed

in terms of primitive processes.

DeMarco's Structured Analysis is an example of a data flow oriented analysis

method. The major steps in his method are:

) Study the current physical environment and document it in a Cur-
rent Physical Data IFlow Diagram.

2) Derive the logical equivalent of the current environment. and de-
velop a Current Logical Data Flow Diagram.

3) Derive the new logical environment. as portraved in the New Logical
Data Flow Diagram plus supporting documentation.

1) Determine physical characteristics of the new environment. and pro-
duce a set of tentative New Physical Data Flow Diagrams.

5) Quantify cost and schedule data associated with each of the possi-
bilities represented by the set of New Physical Data Flow Diagrams.

6) Select one option. represented by one New Phyvsical Data Flow Di-
agram.

) Package the New Physical Data Flow Diagram and supporting doc-
uments into the Structured Specification. [DeMarco. 1979:27)

DeMarco's approach has come under criticism recently for the amonnt of time
spent docnmenting the old systern. This realization has cansed a trend toward <tart-
e with a maodel of the proposed system and eliminating the formal docnmentation

of the existing system [Coad. 1983%. Yourdon. 1989:125].

2.2.4.2 Event-Responsc Based Analysis. The event-response approach
- characterized by the identification of external stimuli to which the system must
respond [Coad. 198%, Shlaer and Mellor. 1988]. These events are used as a starting
point for oreanizing the analysis of the system.

Lhie cvent-response approach results in the development of the “essential

todel™ of the svstem [MeMenamin and Palmer, 1931, Yonrdon, 198910 According

21X

to Yourdon. the essential model is composed of an environment rmodel which defines
the boundary between the system and the outside world, and a behavior model which

provides a view of the insides of the system [Yourdon, 1989:326].

Development of the environment model consists of defining a statement of pur-
pose. a context diagram, and an event list. The statement of purpose is a short (single
paragraph) description of the purpose of the svstem, aimed mainly toward manage-
ment. The context diagram views the system as a single bubble in a data flow dia-
gram. and documents its connections to the outside world. The event list 1s a list of
externally generated signals to which the system must respond [Yourdon. 1939:337-
3.

After the environment model is defined. attention turns to the development
of the behavior model. At this point, a data flow diagram is developed based on
the external events identified in the environment model. A bubble is drawn for each
cvent in the event list, and named with the corresponding response to that event.
Inputs. outputs. and data stores are drawn as needed to represent communication
hetween the bubbles. This first-cut DFD is then layered both up and down: bubbles
are combined to arrive at a DFD at a level above the first cut DED. and exploded
to develop lower level DFDs. An entity relationship diagram is usually developed

in parallel to document the information structure of the system [Yourdon. 1989:360-

3651

2.2.4.3 Data Structure Oriented Analysis. As its name implies. data
strieture oriented analysis specifies software requirements by forusing on the data
structure of a problem instead of the data flow. The svstem is therefore modeled

according to an information structure of the problem [Pressman. 1987:209].

Data stracture approaches share a number of characteristies. First. kev data
ems and processes are identified. Second, the structure of information is assimed

to be hierarchical. Third, data structures are represented as eithe a sequence of

2-19

data items. a repeated grouping of data items, or as a selection from among a set
of data items. Finally, a set of steps are defined for mapping the hierarchical data

structure into the structure of the program [Pressman, 1987:172].

2.2.4.4 Object-Oriented Analysis. The final approach to software re-
quirements analvsis is the object-oriented approach. This is the newest and lcast
defined approach to analysis. There is general agreement in the sense that the over-
all goal 1s to identify objects from the real world in terms of the data and operations
that compose them. The manner in which a system model should be organized in
terms of these objects is still open to debate. Some specific approaches are discussed

in section 2.3.

2.2.5 Summary. This section has identified some of the current tools and
approaches used in the analysis of software requirements. Each approach models. in
some fashion, the information domain, functional elements, and interface character-

istics of the problem. The approaches differ in their choice of the characteristic(s)

to serve as the basis for the model of the sysiem.

2.3 Object-Oriented System Models

There are currently two different approaches to the development of object-
oriented models of software systems. The first approach applies either data flow.
eveut-response. or data structure oriented requirements analysis methods to model
the system. This model is then transformed into a specification which models the
svstemn in terms of objects and operations. The alternative approach is to replace
the more traditional approaches to analysis with an object-oriented strategy from

the beginning [V BL 1989, Ward. 1989:74].

2.0.1 Translating Traditional Modcls. Ward claims that there is no {unde-

rental opposition between certain function-oriented analysis techniques (with ex-

2.20

tensions) and object-oriented design [Ward, 1989:82]. Ladden agrees that at least
some of the principles of the two methods are complementary [Ladden, 1989:78].
and suggests that the major difference is in the order of applying certain analysis
activities. The traditional approach to analysis is to first define the functional ele-
ments and then “package”, or group. similar functior . .ogether. An object-oriented
approach first identifies the packages. or objects, and then identifies the functional

elements associated with each object [Ladden, 1989:82].

2.3.1.1 Abstraction Analysis. Seidewitz and Stark have proposed a
method for translating a data flow oriented requirements specification into an object-
oriented design [Seidewitz and Stark, 1986, Seidewitz and Stark. 1987]. Their
method. which they term abstraction analysis. uses data flow diagrams as a basis
for identifving abstract entities and an initial control hierarchy. Objects. operations.
and a virtual machine hierarchy are then identified [Seidewitz and Stark. 1986:5.1].
The steps involved in transform analysis, taken from [Seidewitz and Stark. 1987].

are

1) Identify the central entity from the data flow diagram. This central
entity 1s the best abstraction of what the svstem will do.

2) Moving away from the central entity along data flows on the DEFD.
identify the entities that directly support the central entity.

3) Construct an entity graph depicting the flow of control hetween
entities. The entity graph shows the interconnection of abstract
entities in the problem domain from a control point of view. The
graph serves as the basis for identifying objects. '

1) Develop an object diagram from the entity graph. The object dia-
gram is based on the central entities and objects of the entity graph.
The diagram (see figure 2.6) delineates objects and their required
access of other objects,

5) Identifv operations provided to and used by the objects.

6) Repeat the above process on lower level DFDs. This will identify
subordinate ohjects to those already identified.

to
v
(8%

7) Translate the object diagrams into an object-oriented design in Ada.
[Seidewitz and Stark, 1987:4.60~4.64].

Ladden has identified some difficulties in identifving objects from DFDs. When
DFDs are used together with traditional structured design. there is usually a one-
to-one mapping between bubbles on the DFD and software modules at the higher
levels of design [Ladden, 1989:84]. However, when identifying objects from DFDs.
the relationship between process bubbles and objects may not be as evident. Objects
may overlap more than one DFD, more than one object may be identified from a
single level of a DFD, and even single bubbles of the DFDD may be allocated to
more than one object. Another difficulty is in associating the data stores. flows and
processes of a DF'D with objects. This may require either grouping a number of DI'Ds
together, or redrawing the DFDs with redundant components [Ladden. 1989:30].
According to Kenth, Seidewitz himself has admitted that it is difficult to get an
object-oriented design from a specification constructed without consideration of the

object-oriented paradigm [Kenth, et al., 1987:11].

2.3.1.2 Alternative Methods. One suggested alternative method of
identifving the objects in the model is to supplement DFDs with other tools. such as
the entity relationship diagram (ERD). Seidewitz. Ladden. and Ward all suggest the
use of the ERD as a means of identifying the objects for the model. The information
from the ERD is supplemented with a stimulus-response analysis [Ward, 1939:79)]
or DFDs [Kenth. et al., 1987, Ladden. 1989:81] to define a more complete system

model.

A method defined by Barnes uses the concept map to organize the informa-
tion contained in the models of traditional analysis methods. Barnes proposes the
development of multiple concept maps from the requirements specification and user
interviews. These concept maps are then synthesized into a single sentence state-

ment of the problem. and a single concept map depicting a solution strategy. This

Run
User
[nterface Terminal
Input/Output
Date
Book
' External Address
Clock et ok
Access

Figure 2.6, Object Diagram of a Desk Top Schedule Organizer
[Seidewitz and Stark. 1987:1.56]

[]
(&%)
o

& e &

single concept map serves as the basis for identifving the ohjects, attributes. an

operations needed in the solution [Barnes. 1988:3.6).

2.3.2 “True” Object-Oriented Approaches. The alternative to translating a
function-oriented specification into an object-oriented design is to use object-oriented
technigues from the outset of requirements analysis. The benefits of the object-

oriented paradigm may be magnified with their earlier application [EVB. 1989].

2.3.2.1 Coad’s Framework for Object-Oriented Requirements Analysis.
As stated in section 2.2.4.4, the object-oriented approach to software requirements
analysis has not reached a consensus in its specific steps. One framework proposed
by Coad is to represent the system in terms of object. attribute. and process lavers.
The object layer identifies potential objects and their relationships. The attribute
layver defines descriptive and identification attributes about the objects. The process
layer defires responses of each object to external events, and the data flows between
objects [Coad, 1988]. The example in figure 2.7 shows the relationships between

objects at these layers.

2.2.2.2 Shlaer and Mellor’s Object-Oriented Domain Analysis. Shiacr
and Mellor have recently proposed an approach to object-oriented analysis based on
information. state. and process models [Shlaer and Mellor. 1989:66]. Together. these
models represent the system requirements. The general elements in their approach

are:

L. Information Models. A detailed version of Chen's entity relationship
diagram is used to identilv the objects. attributes and relationships
of the problem. (See the portion of an information model of a juice
factory in figure 2.8,

2. State Models. The life cvcles of the objects are expressed using state
transition diagrams.

[£
[§
—

Regis-

Object Layer tration

Plate no

State

Title no
State
VID

Attribute Layer

Tyvpe

Process Layer

Figure 2.7. Coad’s Object-Oriented Framework [Coad, 19%%]

Ilv
o
A

3. Process Models. The state transition diagram is used to identify the
processes required to drive an object through its life cycle. Data
flow diagrams are used to depict the action processes for each state
in the state model.

4. Boundary Statement. The external boundary of the automated por-
tion ot the system 1s identined.

Shlaer and Mellor recognize the relationship between the nature of an object
(as actor. agent, or server) and it's location in the system hierarchy. Those ob-
jects at the upper level of abstraction tend to be actors sending messages to guide
lower level objects through their life cycles. Objects in the middle levels are usu-
ally agents. receiving messages from the upper level objects. and requesting opera-
tions from the lowest level objects. The objects at the lowest level of abstraction
are often unintelligent servers. typically used to directlv model a hardware entity

[Shlacr and Mellor, 1989:74-75].

2.3.2.3 Bailin's Object-Oriented Requirements Specification Method.
Sidney Bailin proposes another new method of transforming a textual requirements
statement into a more formal, graphical model. His method uses hoth a set of en-
tity relationship diagrams and a hierarchy of entity data flow diagrams (EDFDs) to
capture the svstem requirements. An EDFD is similar to a traditional DFD. except
that the nodes may be entities as well as functions [Bailin, 1989:609]. Each function

1s performed in the context of some entity.

The steps in producing the specification are described below:

1. Identify key problem-domain entities. An entity relationship dia-
gram is used to record the problem domain entities and their inter-
relationships.

2. Distinguish between active and passive entities. Intuitively, active
entities act as processes. while passive entities are data flows. Bailin
revises this definition to consider active entities as those whose func-
tions are important to consider during requirements analvsis. A

2-26

m uEE

1 Juice Specification
* Juice Name
- percent solids min
- percent solids max
- Min sugar content
- Max sugar content

equires R1 ‘

is required

by

2 Recipe

* Recipe Name
- Cooking Time

- Cooking Temp.
- Heating Rate
- Canning Temp.

holds juice
meeting

RIT

1s contained in

Y

A
is made
according to

3 Juice in Recipe
* Juice Name (R1)
- Recipe Name(R1)
- percent of ingred.

provides

directions for
y manufacture of

5 Storage Tank
* Tank ID
- Capicity in gal.
- Date last cleaned
- Juice Name (R17)
- Gallons in Tank
- Outlet valve ID (R16)

4 Batch
* Batch ID

- Status

- Amount of Batch

- Vat ID (R3)
- Recipe Name (R2)

Figure 2.8,

[Shlaer and Mellor. 1989:69]

i<
o
-1

Shlaer and Mellor's Information Model of a Juice Factory (partial)

passive entity is then one whose functions need not be considered
until the design phase.

3. Establish date flow between active entities. Entity data flow dia-
grams document this flow. Each active entity in the ERD becomes
a process in the EDFD. Passive entities appear as data stores. or as
fows between antitics.

1. Decompose entities (or functions) into sub-entities and/or func-
ticns. These next three steps form the heart of the method. In this
step. the ELTD is decomposed into subentities and/or functions in
a new EDFD. Subentities compose the entity, while a function is
performed by the entity.

5. Check for new entities. The new EDFDs are scanned tn <ee if they
imply the existence of new entities. These new entities, if significant.
should then be included in the entity relationship model.

6. Group functions under new entities. For each of the new entities
introduced in the previous step, the functions performed by or on the
new entities are identified. “icting functions may be rearranged to
fall under one of the new entities. The goal of this step is to identify
the functions to ensure that the entity is functionally complete.

. Assign new entities to appropriate domains. Finally, the new enti-
ties are assigned to some hierarchical domain. The entity relation-
ship diagram. if complex, can be redrawn to reflect this hierarchy.

2.3.2.4 FEVB’s Object-Oriented Requirements Specification. A final
miethod of object-oriented requirements analysis is suggested by EVB Software Engi-
neering. Inc. The requirements analysis process is documented in an object-oriented
requirements specification (OORS) which is divided into an object-general section

and an application-specific section [EVB, 1989:123).

Object-Gieneral Section. The object-general section of the OORS
contains an object and class specification (OCS) for potentially reusable objects and

classes required for the problem. The OCS consists of the following elements:

e .\ textual description of the object or class

= = e

N GE ' T S 90 M R TR W™ W

e Graphical representations of the static and dynamic characteristics
of the object or class. The static relationships of the object or class
to other objects or classes is captured in a semantic net or entity
relationship diagram. The dynamic behavior of the object or class is
represented in a state transition diagram, or, for complex behaviors.
in a petri net graph.

o A list of operations suffered by the object, or operations the object
or class requires of other objects.

e Documentation of the state information of the object or class. in-
cluding restrictions on the state of the object.

e A description of any constants or exceptions applicable for a class.

[EVB, 1989:123]

Application Specific Section. The application specific section of
the OORS documents the elements of the system specific to the problem at hand.
This section contains four divisions. The first contains the OCSs for thr 2pplication
specific syrtem components. The second section consists of QCSs for any components
specified by a design decision made by the user (a metarequirement). The third
segment lists any qualifications on components based on how or where they are nsed
in this system. The final division of the applications specific section is a “precise an
concise” description of how the objects and classes interact in the system to solve
the problem. This description ties together the elements of the software system by
describing items such as the user interface, timing constraints. system limitations.

ete, [EVB. 1989:241-255]

Together. the object general and application specific sections form the object-
oriented requirements specification. This OORS is the basis for developing an object-

oriented design.

200 Summary
The widespread use of different approaches to software development snggests
that there is no single “right™ wav to apply software engineering principles. None

of the proponents of the varions approaches claim that their method is nniversally

2-29

applicable: however, few concrete guidelines exist for determining which approach to

apply to a particular problem.

Regardless of the approach used for software development. it seems customary
to apply that strategy in both the analysis and design phases. If a data striucture
oriented approach is used to uncover detail in the analysis phase, the same tactics
are normally applied during the design phase as a basis for defining the architectural
structure of the software. Likewise. if software is decomposed bhased on the functional
clements of the system, activities in both the analysis and design phases are aimed
towards specifyving and constructing these functional elements. In either case. the

model produced during the analysis phase maps naturally into the design phase.

The use of object-oriented techniques in the design phase requires some pre-
liminary effort to identify the objects required for the solution. The application of
traditional analysis methods results in a functional or data structure oriented mode)
of the problem space. These models do not map as naturally into an object-oriented
design. requiring some sort of translation into an object-oriented model of the re-

quirements prior to design. This translation may be difficuit and obscure.

The literature points to a trend in applying object-oriented techniques from
the inception of the project. Though immature. these techniques show promise in
developing models of software requirements that have a more natural mapping into

an object ariented design.

2-30

[II. An Object Oriented Analysis Method

The last chapter discussed the state of the practice in applying ohject-oriented
design. My experience in teaching Ada and OOD agrees with those, such as
Ladden. 1989]. who reject the informal strategy as the baais for constructing an
object-oriented design. Students of OOD find it difficult to come up with an infor-
mal strategy which is both complete and descriptive of the problem. They seem to
he obsessed with the syntax of the English paragraph instead of the meaning it ix
supposed to portray. Even experienced designers find it difficnlt to come np with an
informal strategy without working backwards from a more intuidve attempt at the

design.

The practice of using traditional analysis tools (e. g. DFDs) to specify the
problem [Booch. 1986. Seidewitz and Stark, 1986] is a step in the right direction.
However, as Jdiscussed in the previous chapter. this approach also has problems.
Often. there is not a clean. one-to-one mapping between the bubbles on a data tlow
diagram and the objects or operations in the system. Thus. the transformation
from these tools to an object-oriented design is confusing and difficult. Also. a
supposed benefit of an object-oriented representation is that it more closely matches
the structure of the real world problem. It therefore scems to make little sense to

first model the problem nsing function-oriented tools and then translate the model

mto an object-oriented representation.

The objective of this chapter is to present a method of modeling software
reqrirements with an object-oriented approach from the ontset. The chapter firs
ontlines the requiremer:s for the object-oriented analvsis 1OO N) method. Next. i
deseribes the general approach of the method. and presents a detailed disenssion of
the miethod steps. Finallv, it diseusses the mapping of this model into an ohject-

ortented design,

-
'

- T S R W B D A EE aEm e

3.1 Goals of an Object-Oriented Analysis Method

The following guidelines should be considered in the formation of an object-

oriented analvsis method.

)

3.1.1 User Orientation. The first objective of an olsject-oriented analysis
method is that it be “user friendly”. In other words, the models devcloped under
the method should be developed with the user, or domain expert, in mind. Toce
often. analysis tools (with their cryptic syntax) are aimed at the design end of the
life cyele. leading the analyst off down a dangerous path. As Roland Mittermeir put

it

Both user and analyst are very soon involved in too much technical detail
to recognize they are travelling very well on a good road. but the road may
lead in the wrong direction. Users cannot discover this mistake. because
the symbols that are shown on the analyst’s road map do not sufficiently
relate to them. and the analyst cannot sce it either, because he lacks
knowledge about the detailed environment. [Mittermeir, et al.. 1987:154]

The tools of the method should be primarily graphical. with supporting textnal
mformation. The tools should also require minimal instruction. so that domain
experts can quickly learn to develop or critique the software models. The notation

of the tools should be consistent whenever possible.

3.1.2 FEase of Use. Likewise. the analvsis method should be fairly easv 10
apply by an analyst. The complexities of the requirements of a large software system
wWill tax the analvst enongh without the added difficulties of applyving a labyvrinthine
~et of steps and tools. Barnes makes the interesting observation that the amonnt
of 1nze enjoved by a particular method is inversely proportional to its complexity

j”,l[‘rl(‘\. l”“*N:'._’.fH}.

R m e

of the problem that are captured in a requirements analysis method. These elements
included the interface cha-acteristics. information domain, functional elements. and
design constraints. These problem aspects should be captured in the QOA method.
In addition. an object-oriented analysis method is specifically concerned with iden-
tifving the objects in the problem, defining the attributes of these objects. and

recognizing the active relationships. or messages passed among these objects.

3.1.4 Other Requirements. In addition to the above goals, the object-oriented

analvsis method should:

o model the system in a tup-down hierarchical manner. The details of
the problem should be presented in layers of abstraction. beginning
with the most general concepts.

e support the definition of embedded systems requirements. After all.
this is the stated application domain of Ada.

e support requirements analysis of large software systems. The tools
and guidelines should consider the complexities of large systems.
Tools (such as the “informal strategy™) which are useful only for
describing small problems have limited use in modelling large soft-
ware systems.

¢ include minimal redundancy. Redundant information is useful in
checking the consistency between multiple views of the problem.
[lowever. redundancy also makes it difficnlt to update a model
when that information changes. The OOA method shonld empha-
size modifiability over redundancy.

e map into OOD. The output of the analysis method should map
cleanly into the design phase. where a Booch-flavored Ada object-

ortented design s carried ont.

The general goals stated above giuided the zelection of tools and steps whic

makhe up the object-oriented analvsis method of this thesis

33

B SEm e

».2 General Approach to Object-Oriented Analysis

The ideas which make up the object-oriented analysis method were synthe-
sized from many sources. The method was greatly influenced by the works of
(Booch. 1986]. [Yourdon, 1989]. [EVB. 1989]. and others. The influence of EVB's
object class specification (OCS) is particularly evident in the method’s description
of each class of objects. However, despite some similarities in the form of class doc-
umentation, this OOA method is clearly different from EVB's in the method steps

and tools used to identify the objects and operations of the problem.

3.2.1 Role in the Life Cycle. The generic view of the software life cycle con-
sists of three phases: definition. development, and maintenance [Pressman. 1987:27].
The OOA method addresses the software requirements analysis activity in the def-
inition phase. The method assumes that a systems analysis has already been done

to define the hardware-software boundary.

[f there are areas of uncertainty in the software requirements. then a series of
prototypes may be justified to better understand these areas. Tools in the QOA
method may help to document desired modifications to the prototypes. At some
point it will be possible to identify the requirements for a major release. The OO\
method can then be used to document this baseline set of requirements in a speci-
fication. This object-oriented requirements specification will be useful later during

development and (especially) maintenance of the software.

The OO method does not attempt to identify all potential objects that will
Le present in the final design. The method will only identify those objects which
are evident from the definition of the problem and software interface. The desioner
shonld expect to identify additional objects and operations during the development
phase that are required for the complete solution. The distinction between analvsis
and design is a fine line- -an attribute of an object is an object in its own right at

the next lower level of abstraction. The analyst should doenment objects and classes

31

to the level of abstraction where the domain erpert is confident that the essence of

the problem is captured.

3.2.2 Method Tools. The object-oriented analysis method was conceived by
first identifying the tools and models required to satisfy the goals listed in section 3.1.
Once the end products of the OOA model were selected. the steps in constructing

this model were defined.

The OOA method attempts to bridge the gap between the problem domain
expert and the designer. The nature of the communication with these partics is
different. The domain expert’s view of the world often lacks the structure desired
by the designer. Therefore, the analysis method must transform an unstructured
view of the problem into one which is structured enough to minimize uncertainty
and ambiguity. The method steps are guidelines for this transformation from the
domain expert’s view to the designer’s view. These steps are not automatic—they
require the intuitive judgement of the analyst and review of the domain expert to

fill in any gaps in the representation of the software requirements.

3.2.2.1 Communication with the Domain Frpert. In the OOA method.
communication with the domain expert is handled primarily through concept maps.
story boards. and a list of external events and desired responses. As described
in section 2.2.3.5, the concept map is an unstructured entity relationship diagram.
The unstructured nature of the concept map enables the domain expert to draw
and understand it with minimal training. This set of concept maps communicates
a general understanding of the problem elements to the analvst and designer. The

maps are also nsed to identify the objects describing the problem and their attributes.

The event /response list identifies external stimuli to which the software must
respond. The story boards provide a means of depicting scenarios from which the
events and responses are identified. The events will later be viewed as messages that

need 1o be passed between objects in the form of an object calling upon an operation

provided by another class of objects. The response of an object to a message may also
imply additional messages that the object must send to other objects in the system.
Together. the concept maps and event/response list paint an insightful picture of the

software requirements.

3.2.2.2 Communication with the Designer. The information from the
domain expert’s concept maps, story boards, and event/response list is conveyed to
the designer through a set of entries in an “object encyclopedia™. This encyclopedia
is similar in concept to a data dictionary, but its entries contain more comprehensive
information than a traditional data dictionary. The major components of such an

entry are:

o A tertual description of the object or class.

o An interface diagram showing the messages an object or class re-
ceives and passes to other objects.

o A structure diagram illustrating the sub-ohjects or attributes of a
class of objects.

o A state transition diagram displaying the states of an object and the
transitions among them.

These items are described in more detail in section 3.3.2.6.

3.9 Steps in the Object-Oriented Analysis Method
The Object-Oriented Analysis (OOA) method consists of the following steps:

. Capture the domain expert’s view of the software. This is accomplished

thirougle the following actions:

a) Define the overall purpose of the software.

bi Draw a set of general concept maps which deseribe the overall prob-

lerm.

3-6

c) Outline any user interface and operational scenarios with story
boards.

d) Produce an event/response list for the software.

e) Identify known restrictions on the size, reliability. or execution time
constraints of the software.

f) Identify any domain expert imposed design decisions (“metarequire-
ments”) for the software.

2. Model the software requirements in a top-down, hierarchical manner. In

this phase. the following guidelines apply:

a) Draw an external interface diagram for the software component.

b) Identify any high level actor objects which perform some overall
algorithm.

c) Construct a preliminary object list.
d) Identify the senders and receivers of the messages/events.

e) Document the object classes.

These steps are covered in more detail in the following paragraphs.

3.3.1 Step One: Capture the Domain Expert’s View. The first step of the
object-oriented analysis method aims at capturing the domain expert’s view of the
problem. Step One may be performed either by an analvst working with one or
more domain experts, or by the domain experts themselves. The emphasis in this
step is in conveying understanding of the problem from the domain expert(s) to the

analyst. At this point, little structure is imposed on the information captured.

3.3.1.1 Step la: Define the overall purpose of the software. The state-
ment of purpose simply gives the reader a starting point for understanding the re-
qrirements of the proposed software system. The length of this description niay
vary with the complexity of the svstem. but can be as short as a single sentence. To
cmphasize oniy the essential elements of the problem. the upper imit shonld be one

frevager,

3.3.1.2 Step 1b: Draw general concept maps of the problem. These con-
cept maps are to provide a general understanding of the elements of the overall prob-
lem. At this point, no structure is imposed on the format of the concept maps. The
domain expert is free to lay out the problem as he sees fit. The maps will later serve

as the basis for identifying the objects of the problem space and their characteristics.

There are a number of sources of input into concept maps. The analyst may
draw upon a textual statement of preliminary requirements, ohserve the design or
operation of a previous system, conduct surveys, or interview domain experts. When
developing concept maps from interviews, it is important for the analyst to do some
“homework™ before the interview so he has some idea of the important aspects of

the problem. Initial concept maps may be redrawn later to clean them up.

When drawing a set of concept maps. the analyst should keep in mind the
central concept of each particular map. The maps should identify both static (struc-
tural) and dynamic relationships between the entities. The maps should concentrate
on the problem aspects that are important to the software solution—it should not
emphasize physical details (e.g. color, physical location) that are not important
to the solution of the problem. Likewise, a single map should not be packed with
too much detail. If the concept map does not fit cleanly on a single page. attempt
to move the “peripheral” concepts and/or relationships to more detailed maps and

concentrate on the central concept of the individual map.

The perception of the problem by domain experts may change over time due
to recent problems or situations. Also, different domain experts may have different
views of the problem. Therefore, it is desirable to obtain concept maps from scveral
experts in the application domain, and over a period of time. These maps will have
common nodes. indicating the most common and consistent elements of the problem.
The concept maps should then be combined into a single set of maps portraving a
consolidated nnderstanding of the problem. This set of concept maps may then he

reviewed by the domain experts in an attempt to breed a consensus view of the

3-8

problem.

3.3.1.3 Step Ilc: Construct story boards. Story boards serve as an early
paper prototype of the proposed soft ware. Story boards are useful in specifying the
physical layout of a user interface. Screen displays and menus can be drawn in story
boards. giving the domain expert and analyst a feel for the syvstem as it plays out a
number of situations through different story boards. However, story boards are not
limited to portraying only the physical layout of display screens. Story boards can
be annotated with logical, as well as physical, entities depicting the state of some

object as it responds to external stimuli.

These models for the interaction of the software with the environment are useful
to prototype the “look and feel” of the software al an early point in the life cycle.
A series of story boards can assist in capturing a sequence of interactions between

the softwai. and the envircnment, much like a comic strip tells a story through its

sequence of frames.

This sequence of actions portrayed through the story boards is useful in acting
out scenarios the software may face. The scenarios will be useful in later steps to
identify external events and responses, and to construct state transition diagrams

for object classes.

3.3.1.4 Step ld: Produce an event/response list for the software systcm.
The event /response list provides an action-oriented view of the problem to comple-
ment the more structural view portrayed in the concept maps. This list will include
all events external to the software to which it must respond. The event /response list
inclndes a short description of the response to each event, as well as anv information
concerning the frequency and volume of the event and any maximum response time.

[f the event i< periodic in nature. the analvst should note this fact.

When developing the event/respouse list. it may be helpful for the analvst

and domain expert to walk through different scenarios from the perspective of the
software system. These scenarios. acted out through the aid of the story boards.
may aid in the identification of events to which the software must respond. The
events and responses evident from these scenarios form the heart of the list. Some
of the arcs on the domain expert's concept map which are labeled with action verbs
are also potential candidates for these events. The events in the list may be initiated
either periodically, or due to some stimuli from an entity external to the software

component.

The responses to each event should be written in enough detail with respect
to the problem elements. For example, if an event in a cruise control system is
the pressing of the accelerate button, the associated response should be specific as
to what needs to be done by the system. Therefore, “increment the desired specd”

4

1s probably better than “zo faster”. An event mav require multiple or conditional

responses. [f the response is complex, it may warrant more than a simple sentence.

The analyst should cross-check the set of concept maps and the event/respounse
list. Each object stated or implied from the nouns in the event/response list should
be included in the set of concept maps previously developed. Although this may
require redrawing the concept maps. it ensures that the concept maps adequately
address all phases of the problem. The event/response list and concept maps may

he developed conenrrently,

The event/response list will be used in phase two of the method to aid in

identifying the messages passed between objects.

3.3.1.5 Step le: Identify any restrictions on the software. Any known
physical or regulatory restrictions on the software should obviously be stated ax
early as possible. Such restrictions may include the size, reliability. execution tine,
or security of the software. Documenting this information at this time could avert a

costlv design error.

3-10

3.3.1.6 Step 1j: Identify any “metarequirements”. Metarequirements
are design decisions imposed on the system by the user (or even higher authority).
For example, use of a certain internal data base format may be dictated to ensure

consistency with existing or future software.

3.3.2 Step Two: Add Structure to the Requirements. The second phase of
the object-oriented analysis method entails modeling the software requirements in a
top down, hierarchical manner. Each class of objects, and their inter-relationships.

are identified and documented in this phase of the method.

3.3.2.1 Step 2a: Draw an external interface diagram of the softwarc
component. This diagram puts the software system in context with the outside en-
vironment. The events in the event list (with the possible exception of periodic
events) will come from the external entities shown in this diagrani. The external
entities often show up on the set of concept maps developed in the first phase of the

method.

3.3.2.2 Step 2b: I[dentify any high level actor objects which perform
some overall algorithm. When implemeﬁted in Ada. the “middle part™ of the exter-
nal interface diagram is often an all-encompassing actor object which sends messages
to other objects to dictate the flow of control of the software. The aigorithm run by
this object is the “glue™ which ties all of the objects together by defining a sequence

to the sending of messages.

The need for such a high level actor object is hinted at in figure 3.1. The
real-world objec s and operations of the problem are encapsulated into software
representations of the entities. Apart from this, there may be an algorithm which
manipulates the objects in the problem. In Booch-flavored object-oriented design,
this algorithm takes the form of a high-level actor object sending messages to the

objects. (The nature of this high level algorithm may be similar to the “informal

Problem Space

Real-world

Objects

Real-world
Objects and
Operations

Real-world Algorithm

Programmer’s Human

of Results

Programming Computer Algroithm
Language Output
Objects and Data

Operations

Solution Space

Figure 3.1. Relationship of Objects and Algorithms [Booch. 1983:39]

strategy” of Booch’s initial OOD method.) This overall object is (ypically the "main
program” in an Ada implementation of OOD. If the algorithm implemented by this
overall object is complex. this object may be broken down into subobjects, imple
mented by Ada tasks, each implementing different logical areas of the problem. An

example is the Environment Monitoring design problem in [Booch. 1987h].

At the highest level of abstraction. it may be difficult to distingnish between a
high-level actor object and a functional process. The definition of an object presented
in the last chapter requires that an object maintain some state information. However,

this state may be simply the composite st. s of eacli of its sub-ebjects.

3-12

At this step in the method. the analyst should identify any high-level algorithm
contrelling the objects. In complex problems. this highest-level object should now
be decomposed into multiple actor objects, each controlling some logical area of the
problem. At this point, the analyst would then draw a structure diagram of the
top-level object to illustrate this decomposition. The domain expert’s concept maps

and the event/response list may provide some insight into this decomposition.

3.3.2.3 Step 2c: Construct a preliminary object list. The next step of
the method is to construct a working list of objects that will potentially appear in
the solution. The objects will normally come from the concept names on the domain
expert’s concept maps. The nouns in the description of any high-level algorithm
may also imply additional objects. In addition to these guidelines. the concepts of
abstraction and information hiding may help divide the problem up into objects. In
the spirit of [Parnas, 1972], each object should hide the implementation of some al>-

1

sttact wubiey fout bie puoldeni. Include entities from the external interface diagram

in this list.

Once a list of objects is identified. group the objects with similar characteris-
tics under the name of a class that encompasses those objects. If there is a “large”
nimber of object classes. altempt to group logically related object classes into sub-
systems. A subsystem denotes a logical collection of cooperating structrres and tools
[Booch, 1987a:615]. In other words, one can think of a subsystem as a set of logically
related objects that forms some entity at a higher-level of abstraction. The grouping

of objects shonld form a manageable hierarchy of subsystems and objects.

33,24 Step 2d: Identify message senders and reecivers. bach of the
cvents in the event/response list can be viewed as a message between two objects.
Thie response corresponding to each event briefly deseribes the algorithm to he -
plemiented by the receiver of the message. This step requires the analvst to identifv

the sender and receiver for each of these messages.

3-13

——

[f the event has more than one response, it may be that these responses should
be performed by different software objects. In this case, identify which objects
pertorm each of the responses. The main receiver of the message will then have to

forward the message tc other objects to signal them of the event.

[f none of the objects previously identified are appropriate as a sender or re-
ceiver of the message, this is an indication that either an external entity is missing.
or that the object(s) identified thus far are not adequate. A new object may have to
be added to the lisi. [Jowever. periodic events may have no explicit sender. unless

the source is some timer object.

3.3.2.5 Step 2e: Document the object classes. Each object class is doc-
umented with an entry in the “object encyclopedia™. Descriptions of external entities

are included if their interface is modeled in software.

The analyst begins by drawing an interface diagram for the top-level actor
object. This diagram shows the access requirements hetween the high-level object
and the objects at a certain level of abstraction. At the top level. most of the
messages from the system-level event/response list will appear as arcs between the
all-encompassing object with other objects. However, it mayv happen that some of
the messages from the system-level list may be more appropriate at a lower level of
abstraction. At some point in the analysis review, the analyst should ensure that all

events in the event/response list are shown as messages to an object.

For cach class of objects shown on the interface diagram. the analyst enters a
new reference in the “object encyclopedia™. [f new objects from the problem space
are uncovered. they are included in the list of objects developed earlier. (Be careful
not to add objects to the list that are only part of the solution and are not reqguired]

to deseribe the problem. These objects will be identified in the design phase.)

When modeling external entities as objects, the classification of these external

objects as actors or servers depends on the nature of the external device (i.e. polled

vs. interrupt driven). Some of these external entities (such as a keyhoard) may he
accessed through the operating system instead of implemented as a software object.
In this case, documentation of these purely hardware entities may not add anything

to ihe specification.

In some circumstances it may be helpful to more explicitly document the in-
teraction between multiple objects. In this case, the analyst may want to include a

separate Petri Net Graph depicting this complex interaction among objects.

This process is repeated at lower levels of abstraction until all objects from
the object list are documented, and the software is modeled to such a level of detail
where the problem is well understood. As stated in section 3.2.1, the object-oriented
analysis method concentrates on defining the problem with respect to its iuterface
with the outside world, as defined by the domain expert. To attempt to document
the problem Lelow this level seems to involve specifving more of the “how™ than the
“what” of the problem. The analyst should try to refrain from inadvertently crossing

this tine line between analysis and design.

3.3.2.6 Contents of an “Object Incyclopedia™ entry. Each class of ob-
jects in the object encvelopedia i1s documented with a textual description of the
object, a structure diagram (showing its attributes/sub-objects). an interface ia-
gram (<shawing the communication of this object to other objects in the system).
a state transition diagram (if appropriate), a description of anyv limitations on an
object’s state, a characterization of messages received (operations provided). a de-
seription of messages sent (operations required) to other objects. a list of exceptional
(error) conditions the object flags. a list of constants exported. a list of objects in
the rlass being doenmented, and any rense considerations for the class.
The textual deseription of a class of Ghjects simply states the purpose of the
object cliars I also may include any miscellancons information about the class not

melided anvwhere else.

315

The structure diagram is a “pseudo™ concept map. [t contains concepts and
relationships as in a standard concept map, but the relationships are limited to the
striuctural relationships of the class being described. The structure diagram exposes
the internal view of a class of objects. documenting its attributes or sub-objects. It
can be drawn using as a guide the concepts linked by structural verbs (e. g. is a. has

a. etc.) on the domain expert’s concept map.

The interface diagram is also a “pseudo” concept map. It displays the external
view of the class—messages sent or received by the class. When drawing an interiace
diagram for a class of objects, it is helpful to list the events and responses for the
mmdividual class. This list aids the analyst in identifving the messages sent and
received. The events should match with the messages received by the object class.
while the response descriptions (along with the action-verb links on the domain
expert’s concept map) will hint at the messages sent to other objects. The messages
sent and received by the object are documented in the corresponding text as well.
This text further describes the significance of each of the messages. In the list of
messages sent. the class name of the receiving class is included. unless the class is

rensable and the receiving class varies between objects in the class.

The state transition diagram (STD) for the class of objects may also aid the
analvst in identifving messages that an object receives. The STD mayv indicate
that a certain message must be received to transition into a certain state. The
analyvst may also study the structure diagram for the class to ascertain whethoer a
sclector, constructor, or iterator operation need be provided for each attribute. The
identification of vperations regiired and provided should he inflnenced by the concept
ol object coupling. Tt is desirable for an object to exhibit black bor coupling. where
the method for each message received requires knowledge of only the class Leing
docimented, rather than white hor coupling where the method requires knowledgee
ol other objectsinits implementation [EVBL 19%9:101]. Finallv. if a message received

b the class of objects involves a complex algorithm in its response. an outhne of

316

| e

this algorithm may be included in the message description.

The analyst draws the state transition diagram based on any state information
implied in the domain expert’s concept map. story boards, or event/response list.
The niessages received by an object may indicate a change of the object’s state is
required. Limitations may exist on the state of an object. These limitations may

meludes:

e A\ limit on the number of items in a homogenecus composite item.
e A limit on the range of values 1n a scaler class.

o A limit on the length of time an object may be in a particular state.

These linutations are doiumented in the textual information for the class.

The series of structure and interface diagrams defines a hierarchical mode! of
the objects in the problem space. The object encyclopedia entries may be grouped
either alphabetically or hierarchically, from the highest level of abstraction to the
lowest. The hierarchical grouping of entries seems best managed with a software
tool so that the analyst can easily get from one level of abstraction to another. The

requirements for such a tool are described in the next chaprer.

Finallv. the object-oriented analysis method assumes that the domain expert
will be mvolved in reviewing the products produced by the analvsis. His input and
review is essential in phase one: in fact the domain expert(s) mayv perform this phase
of the analvsis independent of a separate analyst. The domain expert’s review -
al<o erucial to the suceess of the model of the requirements developed in the second
phase of the OON method. Althongh the nature of this model is more structured
than the first phasel the domaiin expert should be able to follow the model as o
cxtension to the concept maps and event list he provided earlier. The Jinal model of
the reqnirements provides the bridge Letween the domain expert and the desiener,

<o both <hionld nnderstand and agree on the model Lefore more formal design beeins,

3.3.3 Sample Analysis Problem. The following example shows the OOA
method applied to the requirements analysis of a typical cruise controi system for
an automobile. Enough of the analysis is preseated to provide an indication of the

intended use of the method tools.

3.3.3.1 Step One: Capture the Domain Erpert’s View. Phase One of

the method entails the following steps:
Step 1a: Define the Overall Purpose of the Software.

The cruise control systemn adjusts the automobile’s accelerator to antomatically

maintain a constant vehicle speed.

Step 1b: Draw a Set of General Concept Maps Which Describe the Over-
all Problem.

The set of concept maps is shown in figure 3.2 and fignre 3.3.

3%

Button

o D

can be

disengages has
Cruise
Control o
, paintains can bhe
sets

controlled
Throttle . by
yeriod- .
Control [Desired
ically Speed
cherks
influences increments
Buttons
Speed
Sensor
Accelerate
Button
censes
* e.g.
Current
Speed Resnme
Button
Set —
Button On

Fignre 3.2. Coneept Map: Cruise Control Svstem
3-19

A E TN NN B NE B B B v T B EE e

e.g.
& e.g. Off
Button
e.g.
Accelerate
Button
On Turns
Increments Button Off
Activates
Sets
Desired Engages
Speed
Engages
4
Cruise
Control

Fignure 3.3. Concept Map: Cruise Control Buttons

3-20

BUTTONS
D Of Desired Sneed:
D On) Craise
D . 40 50 60 Control
Set 30 70 State
D Resume ' Off
[:' Accelerate On
Speed
Engaged
D Brake Pressed
Throttle Control:

The cr. -e control powers up in the “off” state. Before it is turned on and set tc a specific speed, the cruise contr.l
will remamn idle. Only the *on™ button will have any effect in this state.

Figure 3.4. Cruise Control Story Board: Initial Setting

Step 1c: Outline the User Interface and Operational Scenarios with Story

Boards.

There are no screen displays in the cruise control system. The speedometer
does give an indication that the cruise control is operating. but the cruise control
svstem does not directly manipulate it. However. story boards are useful for revealing
the reaction of the cruise control system to various inputs from the environment. A\
few such scenarios are portrayed in the story boards in figures 3.4, 3.5, 3.6, 3.7, and
3.8 Other story boards conld be added for a more complete deseription of the crise

control svstem.

BUTTONS
L—_l Off Desired Speed:

On 50 Cruise
L__I 40 ' 60 Control
Set 30 70 State
D Resume Off
D Accelerate ——-{ On
Speed

Engaged
D Brake Pressed
Throttle Control:

When the “on” button is pressed. the cruise control change- state, from "off" to “on". The cruise control systemn
will now respond to the “set” button.

Figure 3.5. Cruise Control Story Board: On Button Pressed

BUTTONS
D off Desired Speed: 60
D On) Cruise
- 40 50 60 Control
X Set 30 0 State
D Resume Off
D Accelerate On
Speed
™ Fngaged
D Brake Pressed
Throttle Control:

MWhen the “set” button is pressed while the cruise controlis in the “on™ state, the cruise control enters the “engaged”
<tate. The desired speed is set ta the current speed. and the criise control begins to control the throttle conteol
when changes in speed are necessary.

Fignre 3.6. Cruise Control Story Board: Set Button Pressed

BUTTONS
[___] Off Desired Speed: 60
D On . Cruise
[___) 40 50 60 _ Control
Set 30 70 State
D Resume Off
D Accelerate) — On
Speed
Engaged
Brake Pressed
Throttle Control:

If the brake is pressed while the cruise control is engaged, the system is disengaged and transitions to the “on”
state. The throttle control is no longer active. The desired speed, however, remains set to its value in anticipation
of a later command to resume the cruise control system.

Figure 3.7. Cruise Control Story Board: Brake Pressed

BUTTONS
[:] Off Desired Speed: 60
D On . Cruise
D 10 90 4 60 . Control
Set 30 ‘0 State

D Resume Ooff
‘_—_] Accelerate On

Speed

™| Engaged

D Brake Pressed

Throttle Control: Accelerate

If the current speed drops below the desired speed while the cruise control is engaged. the ciuise control system
<eneds a signal to the throttle control to accelerate the vehicle. This aceelerate signal will continue until the enveen

~peed s equal to or greater than the desired speed.

Fignre 3.8 Cruise Control Story Board: Speed Drops

3-23

Step 1d: Produce an Event/Response List for the Software.

Eventl: The on button is pressed.

Resp.1: The cruise control system is activated.

Maximum response time: 0.5 seconds.

E2: Set speed button is pressed.
R2a: Cruise control system is engaged.

R2b: Set the desired speed equal to the current speed.

Maximum response time: 0.25 seconds.

E3: Time to update the throttle position (periodic).
R3: If engaged, then set the throttle based on the current speed vs. the

desired speed.

Projected event rate: 10 / second.

E1: Brake is pressed.

R1: Cruise control system is disengaged.

Maximum response time: 0.1 seconds.

[£5: Resume button is pressed.

R3: Cruise control is engaged.

Maximum response time: 0.25 seconds.

E6: Accelerate button is pushed.

R6: Increment desired speed.

Maximum response time: 0.25 seconds.

3-21

—

E7T: The off button is pressed.
R7a: Throttle control is disengaged.

R7b: Cruise control is deactivated.

Maximum response time: 0.1 seconds.

Step le: Identify Known Restrictions on the Software.

e The cruise control system object code must fit within 16K of mem-
ory.

o The cruise control system must disengage if the break is pressed at
least 99.99999% of the tiine.
Step 1f: Identify any “metarequirements”.

The maximum speed allowed for setting the cruise control system is 100 milex

per hour.

3.3.32.2 Step Two: Model the Software Requirements in a Top-Doun.

Hierarchical Manner. Phase Two of the method consists of the following steps:

Step 2a: Draw an External Interface Diagram for the Software Compo-

nent.
The external interface diagram is shown in figure 3.9.

Step 2b: Identify any High Level Actor Objects which Perform Some
Overall Algorithm.

None. The algorithm of the cruise control system object is not complex enongh

to decompose. The object is documented in the obhject encyelopedia.

Speed
Sensor

determine

speed signals

Accelerate
Button

Cruise signals

Control
yyster

accelerate

decelerate signals

signals

signals

Offb\

Button

On
Button

Figure 3.9, Cruise Control Syvstem: External Interface Diagram

3-26

Step 2c: Construct a Preliminary Object List.

Cruise Control

Throttlz control

Speed
Current Speed

Desired Speed

Button
Set Button
On Button
0ff Button
Resume Button

Accelerate Button

Timer

Step 2d: Identify the Senders and Receivers of the Messages/Events.

Iventl: The on button is pressed.
Sender: On Button
Receiver: Cruise Control

20 Set speed button is pressed.
Sender: Set Button
Receiver: Cruise Control
R2a: Cruise control svstem is engaged. (Performed by Criise Control)
R2b: Set the desired speed equal to the current speed. (Performed by

C'rise Control)

E3:

F4:

E5:

E6:

R7Ta:
R7h:

Step 2e:

The

Time to update the throttle position (periodic).
Sender: Timer
Receiver: Cruise Control

Brake is pressed.
Sender: Brake

Receiver: Cruise Control

Resume button is pressed.
Sender: Resume Button
Receiver: Cruise Control

Accelerate button is pushed.
Sender: Accelerate Button
Receiver: Cruise Control

7: The off button is pressed.

Sender: Off Button
Receiver: Cruise Control

Throttle control is disengaged. (Performed by Cruise Control)

Cruise control is deactivated. (Performed by Cruise Control)

Document the Object Classes.

following pages document representative classes of ubjects present in the

cruise control problem.

3-02R

Cruise Control Object

Textuaal Description:

The cruise control is the “brain™ of the cruise con ol system. [t keeps track
of the state of the cruise control system and periodically updates the position of the

throttle to maintain a constant vehicle speed.

Structure Diagram, Interface Diagram, and State Transition Diagram:

See fienure 3.10, figure 3.11. and figure 3.12.

Description of messages received:

Break pressed Signal that the break pedal has been
pressed

Set button pushed Signal that the set button has been pressed

Off buttou pushea Signai ti:at the Gii bution has been pressed

On button pushed Signal that the On button has been pressed

Resume button pushed Signal that the Resume button has been
pressed

Accelerate button pushed Signal that the Accelerate button has been
pressed

Update Throttle Signal that it is time to update the throttle
position

3-29

Cruise
Control

has

Current
Speed

can be

Speed

tigure 3,100 Crinise Control: Structure Diagram

-

Deternmine Speed

Gireater
THan
Assign

I~

Current
Speed

Brake Pressed

Set Button Pressed

Off Button Pressed

On Button Pressed
Resume Button Pressed
Accelerate Button Pressed
Update Throttle

Cruise
Control

Disengage
Accelerate
Decelerate

Increment

o7 TN
Destred i
A

1= A

e Controls interface Diaeram

= aa W

Off Button
Accelerate Button
Resume Button
Set Button

/ Oft

On Butwon
Off Button
On Button
On Accelerate Button
Brake Set Button
Resume Button

Off Button
Engaged

Set Button

On Button
Resume Button
Arcelerate Botton

Fiocure 3,12, Crinse Control: State Transition Diceram

342

Deoscription of messages sent:

Speed Sensor.Determine Speed
Speed.Greater Than

Speed. \ssign
Desired Speed.Increment

Throttle. Accelerate
Throttle.Decelerate

Throttle.Disengage

Get the current speed from the speed sen-
sor

Determine if one speed is greater than an-
other

Assign one valne of class speed to anotlier
Increment the value of the desired vehicle
speed

Set the throttle to make the vehicle accel-
erate

Set the throttle to make the vehicle decel-
erate

Release countrol of the vehicle throttle

Description of any state limitaiiuns:

The cruise control object must initialize in the “Off” state.

List of exported exceptions:
Norte,

List of exported constants:
None,

Reuse counsiderations:

This object is application specific.

Button Class

Textual Description:

The butten class models a phbysical button. When the button is pushed. a

signal is sent to some recciver. In this application, the receiver for all button objects

is the cruise control object.
Structure Diagram, Interface Diagram, and State Transition Diagram:
See figures 3.13 and 3.14.
Description of messages received:
None.
Description of messages sent:
Signal Signal the receiver that the button has been pressed.
Description of any state limitations:
None.
List of exported exceptions:
None.
List of exported constants:
Nor..

List of cbjects in the class:

¢ On Button
o Off Button
e Set Button
¢ Accelerate Button

s Resume Button

3-34

can be
either

Signals

Receiver

Fignre 3.13. Button: Stracture Diagram

E Sl e

o ME O A BN G & T

Button

Signals

Figure 3.14. Button: Interface Diagrain

Note: In each case the receiver of the signal is the cruise control object.
Reuse considerations:

This object is potentially reusable.

330

B

Speed Class

Textual Description:

This class describes objects which represent the speed of the vehicle. This class

is based on the integer class.
Structure Diagram and Interface Diagram:

See figures 3.15 and 3.16.

has upper limit

1s an o
has lower limit

[nteger

Figure 3.15. Speed: Structure Diagram

State Transition Diagram:
See figure 3017,

Description of messages received:
CGireater Than Test if one speed is greater than another.

[nerement Increment the value of the speed.

Assignment Assign one valiue of speed oy another,

Greater
Than

[ncrement

Assign

Speed

Figure 3.16. Speed: Interface Diagram

value
less than
Max _Speed

mcrement

—
value \\
equals

Max Speed

increment / constraint error

Fignre 3,17, Speed: State Transition Diagram

AN

R EE .

Description of niessages sent:

None.
Description of any state limitations:

An object of this class may have a value in the range 0..100.
List of exported exceptions:

Constraint Error An attempt was made to increment a speed
object which was at its maximum value

List of exported constants:
Maximum speed.

List of objects in the class:

o Current Speed
¢ Desired Speed

Reuse considerations:

This object has limited reuse potential.

Entries would also be placed in the object encyelopedia for the remainder of

the objects in the object list.

3-39

sS4 Mapping to an Object-Oriented Design

The model produced by the OOA method maps directly into a Booch-flavored
ohject-oriented design. Any high-level algorithm is documented, as are all classes of
objects in the problem space. With the possible exception of certain external entitics.
each ciass of objects documented in the object encyclopedia will likely be part of
the design. The class’s entry in the object encyclopedia contains the information

requuired to design the object.

Some details of the object classes were intentionally isnored in the analvais
phase. For example, while OOA method identified the messages passed between
objects. it made no attempt to define the arguments of these calls. The araiment«
of messages are often at a level of abstraction lower than the class being enmented.

Therefore. cataloging these arguments was deferred until the design phasc

Likewise. the nature of the implementation of each class of objects was not
addressed during analysis. Whether objects are concurrent with other objects s
one such implementation detail deferred uatil design. All objects are potentialiv
conenrrent—only efficiency considerations prevent the designer from actuallyv imple.
menting the objects in this manner. It is the designer’s responsibility 1o determine

the tmplementation of each object.

As the designer defines the software solution, he will undoubtediv discover
inore objects and operations to be implemented. For example. if the designer wakes
an object concurrent, he may have to add operations to initialize and terminate the
object. The details of the solution will also present more object classes than we e
doenmented during analysis In practice, information must be collected abour these
new object classes as well. Therefore. the designer mayv continue where the analvs
weft off. and nse simitlar tools to those listed above in documenting objects identitiod

during the design phase.

3-10

The tools and procedures Jdefined in this chapter make up the object oriented
analysis (OOA\) method. The domain expert and analyst may use paper and pencil
to document this information. However. a computer-aided tool will greatly assist
the analyvst in creating and reviewing the documentation. Such a tool would also
give more of a hierarchical nature to the entries in the object encyclopedia. The
requurements for such a tool are outlined in chapter IV. The OOA method is more
fully evaluated in chapter V, when the method is applied to a more comprehensive

requiirements analysis problem.

IV. Requirements for an Object-Oriented Analysis Tool

The previous chapter suggested the creation of a software tool to manage tuc
products and process of the object-oriented analysis method. This chapter describes
a wser interface and set of guidelines for the design of such a tool. The purpose of
this descriptivn is to show the potential benefits the OOA method can receive {rom
automated snpport. Although some of the tools from the OOA method are nsed in
this deseription, this chapter is not an example of the OOA method —a complete
application o1 an example problem is presented in chapter V. A more complete
specification and design of the OOA tool is recommended as a futnre project {se:

section 6.3).

Jf Framowaork for OO Tool Description

The Objecr-Oriented Analysis Tool contains many characteristicsof a Decision
Support Systcm (1)SS). The tool is aimed at providing support to the analyst in his
attempt to mdel the software requirements. Tlie proposed OOA tool. however,
does not secm 1o fit the definition of a “true™ DSS. A typical DSS contains ~ome
tvpe of model that draws upon a data base of information in order to provide a
qiantitative a-~essment hich will assist a decision maker. At the beginning of the
<oftware requitements analysis activity, there is little information that wonld he
an existing database (other than a library of rensable components) and no fornal
model to draw npon the information that does exist. The OO method ix more
ol o erealive process than an analvtic one. guided by henristies insiead of nodels
Nevertheless, o DSS framework can be used to identify the nature of the OO ool
n-er interface,

Spraciue and Carlson have proposed a process-independent approach for rden

H
i

1fving the capabilities of a DSY. This approach emphasizes the consideration ol

Representation-. Operaticns. Memory aids, and Control mechanisms tRONC Fop-

resentations communicate information about the problem to the user. often using a
report or graphical format. The DSS should provide a set of operations to manipu-
late the information in the representations. Memory aids assist or gnide the user in
applying the operations on the representations. The control mechanisms enable the
nser to direct the session with the tool, and get from one set of representations to an-

other [Sprague and Carlson, 1982:96]. The ROMC principles guided the description

of the OOA tool user interface presented here.

Lhe chapter uses two previously describe tools, the concept map and story
board. to present the OOA tool description. The concept maps identify the elements
ol the object-oriented requirements specification produced Ly the OOA method. The
maps also ulentifv the information (memory aids) upon which a specific element o)
the specitication depends. The storyboards describe a proposed user interface for
the OCA tool. They were created to describe the automated support for develop-
mg each of the elements illustrated in the concept maps. The development of cacli
storyboard considered the representations, operations, memory aids, and control

mechanisms appropriate for that step in the OOA method.

/)

1.2 Relationships Among Models in the Object-Oriented Analysis Mcthod

Many of the steps in the Object-Oriented Analvsis (OOA) method are hased
on the work of previous steps. With this in mind, one can draw a set of concepn
maps reflecting these relationships among the models developed in the method.

Fignre 1.2 shows a concept map describing the overall OOA method. As de-

fined in the previow. chapter. the OQA method has two major steps: capturing the
~uftware requirements from the domain expert, and structnring those reqnivements
mito a form suitable for design. The later process of obiect-oriented design is hased
primarily on this strictured representation. though the initial concept maps and

Sorvhoards mayv also inflnence the designer.

[he elements of the initial, unstenctured model of the requirements are s

EE - e

consists of

consists of
Structuring
Reqts.

Capturing
Reqts.

based on produces

produces

Structured
Model

Unstructured

based primanly

influenced on

by

Fignre 1.1. Concept Map: OOA Method

N 5 B A U B AaE = Em e

Story
boards

consists of

consists of

hased on

Event-
esponse

Figure 4.2. Concept Map: Capturing the Requirements

trated in figures 4.2, 4.3, and 4.4. These maps point out some of the relationships
among the different models. For example, the event/response list is based on the
domain expert’s concept map and storyboards, while the concept map is verified
sgainst the event/response list. An OOA tool can assist the analyvst in applving the
method steps by informing the analyst of these relationships among models. and
providing a means of displaying previous information upon which a specific model is

based.

The models developed in the second step of the OOA method display a sl
reliance upon previons models. For example. the external interface diagram is based
on both the domain expert’s concept maps and the event /response list. Figures 1.5,

and 1.6 deseribe the primary relationships between these models in further detail.

verified against

Concept

contains

Relation-
ships

can be

are often

y
- _)/are often

between

Iligure 4.3. Concept Map: The Unstructured Concept Map

Event-
Response

15t,

contains

L to

become

y

Messages

Methods

send and

receive

Objects

Fignre 4.1. Concept Map: The Event/Response List

1-6

Structured

contains
. Model
contains .
. High-Level
contains Decomp.
External
nterface
D based o
based on
Object based on
Encycl.
try
based on based on
based on
Figure 4.5. Concept Map: Structuring i, .eqnirements

Object
Encyel.
uiry
ontained in
Potential cortains
bject
1st
based on
contains
Entities contains Gonders
4
contains
based on

Structure

lagram Interface

based on
hased on

Structural based on

Relat.

\\gontains

\

hased on

based on

Concept
Map

Fignre 4.6, Concept Map: The Object Encyvelopedia

7.3 General Requirements for an Object-Oriented Analysis Tool

First and foremost, the OOA tool should be “user friendly™. This is especially
inportant in light of the fact that the domain expert may be the one using the
tool to enter initial concept maps, storyboards, and event/response lists. Therefore.
the OOA tool should run in a graphical windowing environment, with user inpni
aliowed throngh menus and a mouse. Use of an existing windowing environment alsq
provides the user the ability to customize the size and shape of the tools windows.

This Hexibility enhances the tool's ability to support a range of user preferences.

Because the models developed during the course of analysis depend on previous
representations, the OOA tool should enable the user to view and edit multiple views
simultaneously. Therefore. the windowing environment shounld enable the user to

open multiple windows with different models of the requirements.

To assist the novice user. the system should provide a reference to context
sensitive help windows. This help should be of two kinds. Tt should: 1) provide
assistance on the use of the OOA tool itself, and 2) suggest guidelines for applying
the steps of the OOA method. Also, the OOA tool should be consistent in the
presentation of screens and menus. Menu selections that are present in all windows
(e. g. Help) should be positioned in the same relative position in each menu. This

positioning will minimize the “learning curvc” of a new user.

Occasionally, the analyst may have a random thought about a topic not directly
related to the model he is currently working on. Therefore. the OOA tool should
have a notepad capability to provide an easy way to capture these thoughts. The
notepad may also be nsed to record any difficulties encountered while nsing the OO\

tool,

In cases where there is overlap of information among different models i the
OOA method, the OOA tool should ensure that the different representations are

consistent. For example, the OOA tool could ensure that cach class of object iy

1-0

the list of potential objects is documented with an entry in the object encyclopedia,

Other potential cross checks the tool could perform include:

o verifying that each even! in the event/resnonse list has been cataloged with a

message sender and receiver.

e ensuring that each message in the list of messages shows up on the interface

diagram for some object class.

e confirming each message sent or received by a class of objects shows up on

both the interface diagram and the textual descriptica for that class.

o verifving that the list of messages received by a particular class includes each

of the messages identified in other classes as being sent to that ohject.

The general requirements cataloged above (along with the concept maps pre-
sented earlier in this chapter) are sufficient to carve out a set of storybhoards which

illustrate the “look and feel” of an OOA tool.

4.4 Storyboards of the Object-Oriented Analysis Tool

The relationships between model elements shown in the concept maps and
discussed in section 4.2 furnish insight into the requirements for a software tool to
assist in applying the OOA method. Each step in the OOA method can be supported
through a menu choice of the OOA tool. The tool will assist the analvst in each step

by providing access to the information that each step is based on.

The initial screen of the OOA tool is shown in figure 1.7. This window has
a number of characteristics that are common to other windows presented by the
OO0A tool. Windows of this nature can he constructed with a number of different
windowing systems: the format shown is characteristic of Microsoft Windows for
the IBM PC class compnter. Clicking the mouse on the small box in the upper

left corner of the window presents a menu of window commands, such as resizing.

1-10

moving. or closing the window. By closing the main window, the user conchides
a session with the OOA tool. The arrowed boxes in the upper right hand corner
allow the user to expand the window to cover the entire screen, or to shrink the
window into an icon. Other menu choices are presented in rows across the top of
the window. An exclamation point at the end of a menu cheice denotes an aciion
which takes place immediately when choice is selected. A menu choice lacking the
trailing exclamation point will request more information from the user before the
action 1s taken. Windows may also have scroll bars to move the window over

larger underlying drawing or text.

The initial screen of the OOA tool integrates all steps of the OO\ method.
from this display, the user has access to the models developed in both step one
(Capture Requirements) and step two (Structure Requirements) of the OO A method.
From this window. the user may also load an existing project. or clear the tool for
a new project. Commands also allow saving the project, printing all models and

docnmentation. and access to the notepad and help functions.

{.4.1 Capturing Software Requirements. Figure 1.8 displays the menu choices
for tools whicli support capturing the software requirements under step one of the
OO\ method. It the user selects the Tert! option. the window shown in figure 1.9
is created. This window, and similar windows described later, do not take up the
entire screen. This allows the user access to the main menu. and thus other maodels
developed during the analysis. Of course, the analyst may alwayvs click the mouse on
the ~up™ arrow in the box in the upper right corner to expand the window to cover

the entire screen.

From the Capture Reqts menu. the user may also develop and/or view a concept

map {see figure 1.10), storvboard (fignre 1.11), or eveni/response list (figure 1.12).

'

- 00A Tool AR

CaptureReqts StructureReqts LoadProject New! SaveAll!
PrintAll! Notepad! Help!

This is the main screen of the OQA tool. The window format and commands of this window are similar to thaose
used for other screen displays. Clicking the left mouse button on the small box in the upper left corner of the window
presents a menu of window commands, such as close, or resize. Clicking on the arrow boxes in the upper right hand
of the window allows the user 1. maximize the window to cover the entire screen, and shrink the window into an
lcon.

The second and third lines of the window display menu choices that may be selected with the mouse. Any choice
~nding in an exclamation point initiates an immediate action, while those without the exclamation point present
another menu of choices. All windows have menu options Notepad! and Help!. These options allow the nser 1o
access a notepad to record random thoughts while using the tool, and context sensitive help and guidelines abao.
the system and OOA method.

I'he main menu contains the following options:

e (apturcReqts: Present the “Capture Requirements” menu (see fignre 4.8) to perform actions in step one of
the OOA method.

o StructureRegts: Present the “Structure Requirements” menu (see figure 1.13) to perform actions in step two
of the OOA method.

lLsadPraject: Present a list of project names that the nser may load.
o New! Clears the OOA tool for a new project.

o Sare Al Save all aspects of the project to disk. If no project was initially loaded, the user will be prampred
for the project name.

o PrintAll Print all project documentation.

Figure £.7. OO0\ Tool Storvboard: Main Tool

112

- 00A Tool AR
CaptureReqts StructureReqts LoadProject New! SaveAll!
Text! Help!

Concept Map!

Story Board!
Event List!

The »Capture Requirements™ menu allows the user to make the following choices for step une of the OO e chd
e Tert! Document textual information about the system (see fignre 4.9).
s Concept Map!: Draw a set of concept maps (see figure -4.10).
o Storyboard!: Draw a set of storvboards (see figure 4.11).

o Event List!: Create an event/response list (see figure 4.12).

Figure 1.8, OOA Tool Storvhboard: Capture Requirements Menn

- 00A Tool AR

CaptureReqts StructureReqts LoadProject New! SaveAll!
PrintAll! Notepad! Help!

—_—

- Text: ProjectName 14

Save! DiscardChanges! Print! Notepad' Help!

Purpose:

Constraints (Size, reliability, security, time):

Metarequirements:

When the Tort! selection is chosen from the "Capture Requirements™ menu, the textual information input wae iooa
appears. This window contains a template of the textual information that should be captured from the Loan

cxpert. The anitial position of the window allows the nser to aceess the main menu to get other mformation alaoat

the project. The seroll bar on the right hand side of the window allows the nser to seroll throngh the texo wirhe o
ek of the monse Lutton.
Fhe folowing menn choices are specific to this window:

o ~Nyre! Save the current textual information.
o [hegeithangees Discard changes to the textual information since the last save.

o Frontt et the textual information.

Froure 1.9 O0ON Tool Storvboard: Textual Information

- 00A Tool [+]4

CaptureReqts StructureReqts LoadProject New! SaveAll!
PrintAll! Notrpad! Help!

- Concept Maps: ProjectName v
New! Read AddConcept! AddRelationship! Delete Move

Save! SaveAs DiscardChanges! Print! Notepad! Help!

Concept
Mapp

contains contains

among

o — >

Verified Against Event/Response List

When the Concept Map! selection is chosen from the “Capture Requirements” menu, the concept map window
appears. This window contains commands which allow the user to draw concept maps. The initial position of the
window allows the user to access the main menu to get other information alout the project. The bottom line of the
window displays the other method steps upon which the concept maps are based. The scroll bar on the bottom and
tight hard sides of the window allow the user to screll through the concept map with a click of the mouse button.

The following menu choices are specific to this window:

e Newk Initializes the window to draw a new concept map.
« Read: Reads a concept map from a file.

o AddConcept! Adus a concept to the map. The user is prompied for a label for the concept. and is allowed
to position the concept with the mouse.

o AddRelrtionship!: Adds a relationship between tw) concepts. The user is promoted for the label to arr.e i
to the relationship, and is allowed to position the abel with the mouse.

e ['rlrtr: This selection is used to delete a concept or relationship. After selecting this opti . the user chiok-
the maouse on the concept or relationship to delete.

o Mo v This selection is used to move a ~.neept. After selecting this option, the user clicks on the coneept
to move, then drags it to its new location.

e Sa:+’ Save the current concept map.
o SaieAs’ Save the concept map in a different file. The user is prompted for the name of the new file
o [hscartChunges!. Discard changes to the concept map since the last save.

e Frint! 'rint the current concept map.

Fignre 1 10. OOA Tool Storvhoard: Concept Maps

b-15

- 00A Tool Y4

CaptureReqts StructureRegts LoadProject New! SaveAll!
PrintAll! Notepad! Help!

- Story Boards: ProjectName t{4

New! Read Save! SaveAs DiscardChanges! Print!

Notepad! Help!

... (brawing Commands) ...

When the Storyhnard! selection is ctinsen from the “Capture Requirements” menu, the storyboard window appears.
I'his windew connects to a drawing package which allows the user to draw free-format graphics for storyboards. The
initial position of the window allows the user to access the main menu to get other information about the project.
I'he seroll bar on the bottom and right hand sides of the window allow the user to scroll through the concept map
with a click of the mouse button.

T he following menu choices are specific to this window:

o Vol Initializes the window to draw a storyboard frame.
o flrad: Reads a storyboard frame from a file.

e Sare!n Save the current storyboard frame.

¢ Sareds’ Save the storyboard frame in a different file. The user is prompted for the name of the new lile
o [harariChanges! Discard changes to the storyboard frame since the last save.

o Print! I'rint the current storyboard fram:.

o [Jrauwinyg Commands: Drawing commands specific to an existing free-format drawing program will b -
clnded.

Fianre $.11. OOA Tool Storyvboard: Storyhoard Window

1-16

N T .

- Q0A Tool AR

CaptureReqts StructureReqts LoadProject New! SaveAll!
PrintAll! Notepad! Help!

- Event/Response List: ProjectName AR

Save! DiscardChanges! Print! Notepad! Help!

Eventl!:

Responsel:

Based On: Concept Maps, Story Boards

When the Event List! selection is chosen from the “Capture Requirements” menu, the Event/Response List win-
dow appears. This window contains templates for entering events to which the software must respond. and their
~orresponding responses. The initial position of the window allows the user to access the main menu to get other
information about the project. The bottom line of the window displays the other method steps upon which the
~vent /response list is based. The seroll bar on the right hand side of the window allows the user to scroll through
the list with a click of the mouse button.

[ho fullowing menu choices are specific to this window:

e Save! Save the current concept map.
o DisrardChangres!. Discard changes to the concept map since the last save.

« Frint® Print the current concept map.

Figure *.12. OOA Tool Storyboard: Event /Response List

4.4.2 Structuring Software Requirements. The Structure Reqts menu (see lig-
ure 1.13) provides a number of tools which can assist the analyst in adding structure
to the requirements to make them sufficient for the object-oriented design pliasc,
I'ram this menu, the user may choose to draw or view an external interface diagram
1see figure 1.14), decompose any high-level algorithm (see figure 4.15), list potential
objects and classes (figure 4.16), list message senders and receivers (figure 4.17). or
edit or view entries in the object encyclopedia (see figure 4.18). Each of these options

is discussed further in the text corresponding to the storyboards in the figures.

118

- 00A Tool T4
CaptureReqts StructureReqts LoadProject New! SaveAll!

PrintAll! EID!

High-Level Decomp
Object ID!

Msg Send & Rec!
Object Encyc.!

[he "Structure Requirements™ menu allows the user to make the following choices for step two of the OOA methol:

e EID! Draw an external interface diagram (see figure 4.14).

o [igh-Level Decomp!: Draw a structure diagram depicting the decomposition of the high-level algorithm (~er
figure 4.15).

o Object [D!: Tinter a list of potential objects in the solution of the system (see figure 1.16)

o Msg Send # Rec” Document the senders and receivers of messages corresponding to events in the event List
fsee figure 4.17).

o (hyect Encyr.l Create entries in the object encyclopedia (see figure 4.18).

Figure 1.13. OO\ Tool Storyboard: Structure Requirements Menn

1-19

- 00K Teozld T4

CaptureReqts StructureReqts LoadProject New! SaveAll!
PrintAll! Notepad! Help!

-| External Interface Diagram: ProjectName Y|4

AddEntity! AddLink! Delete Move Save!

DiscardChanges! Print! Notepad! Help!

Timer

signals

signals

| Based On: Concept Map, Event/Response List

When the EID!selection is chosen from the “Structure Requirements™ menu, the External Interface Diagram window
appears. This window contains commands which allow the user to draw the external interface diagram. The initial
position of the window allows the user to access the main menu to get other information about the project. The
bottom line of the window displays the other method steps upon which the external interface diagram is based. The
scroll bar on the bottom and right hand sides of the window allow the user to scroll through the diagram with a
click of the mouse button.

The following menu choices are specific to this window:

o AddEntity!. Adds an entity to the map. The user is prompted for a label for the entity, and is allowed to
position the concept with the mouse. :

o AddLink” Adds a link between two entities. The user is prompted for the label to attach to the link, and is
allowed to position the label with the mouse.

e Delete: This selection is used to delete an entity or link. After selecting this option, the user clicks the mouse
on the entity or link to delete.

e AMove: This selection is used to move an entity. After selecting this option, the user clicks on the entity to
move, then drags it to its new location.

e Save! Save the current external interface diagram.
o DiscardChanges!. Discard changes to the external interface diagram since the last save.

e Print” Print the current external interface diagram.

Figure 4.14. OOA Tool Storyboard: External Interface Diagram

- 00A Tool vis

CaptureReqts StructureReqts LoadProject New! SaveAll!
PrintAll' Notepad! Help!

= High-Level Decomposition: ProjectName V4
AddEntity! AddRelationship! Delete Move Save!
DiscardChanges! Print! Notepad! Help!

light
Compute

1

Based On: Concept Map, Event/Response List

When the High-Level Decomp! selection is choser from the “Structure Requirements™ menu, the High-Level De.
composition window appears. This window contains commands which allow the user to draw a structure diagram
depicting the decomposition of any high-level algorithm in the system. The initial position of the window allows the
user to access the main menu to get other information about the project. The bottom line of the window displuy s
the other method steps upon which the decomposition s based. The scroll bar on the bottom and right hand sides
of the window allow the user to scroll through the diagram with a click of the mouse button.

The following menu choices are specific to this window:

o AddEntity!: Adds a new entity to the map. The user is prompted for a label describing the entity, and is
allowed to position the bubble with the mouse.

o AddRelationship!: Adds a relationship between two entities. The user is prompted for the label to attach to
the relationship, and is allowed to position the label with the mouse.

o Delete: This selection is used to delete an entity or relationship. After selecting this option, the user clichs
the mouse on the entity or relationship to delete.

e Move: This selection is used to move an entity. After selecting this option, the user clicks on the entity to
move, then drags it to its new location.

e Save!: Save the current diagram depicting the algorithm decomposition.
o DiscardChanges!: Discard changes to the diagram since the last save.

e Print!: Print the current diagram.

Figure 4.15. OOA Tool Storyboard: High-Level Algorithm Decomposition

4-21

- 00A Tool 14

CaptureReqts StructureReqts LoadProject New! SaveAll!
PrintAll! Notepad! Help!

- Potential Object List: ProjectName 14
Save! DiscardChanges! Print! Notepad! Help!

Cruise Control

Throttle Control

Speed

Current Speed
Desired Speed

Based On: Concept Maps, Event/Response List, EID

When the Object/D! selection is chosen from the “Structure Requirements” menu, the Object Identification window
appears. This window allows the user to enter a list of potential objects. The initial position of the window allows
the user to access the main menu to get other information about the project. The bottom line of the window displays
the other method steps upon which the object identification is based. The scroll bar on the right hand side of the
window allows the user to scroll through the list with a click of the mouse button.

The following menu choices are specific to this window:

o Save!: Save the current list of potential objects.
s DiscardChanges!. Discard changes to the list since the laat save.

¢ Print!: Print the current list of potential objects.

Figure 4.16. OOA Tool Storyboard: Potential Object List

4-22

- 00A Tool AR

CaptureReqts StructureReqts LoadProject New! SaveAll!
PrintAll! Notepad! Help!

- |Message Senders and Receivers: ProjectName K

Save! DiscardChanges! Print! Notepad! Help!

Eventl: The On button is pressed.
Sender:

Receiver:

E2: The Off button is pressed.

Sender:

Based On: Event/Response List, Concept Maps

External Interface Diagram, High-Level Decomp.

When the Msg Send £ Rec selection is chosen from the “Structure Requirements” menu, the Message Senders and

Heceivers window appears. This window allows the user to annotate each event in the event/response list with a
name of the sender and receiver. The initial position of the window allows the user to access the main menu to et
other information about the project. The bottom line of the window displays the other method steps upon which
the identification of messages senders and receivers is based. The scroll bar on the right hand side of the window

allows the user to scroll through the list with a click of the mouse button.
[he following menu choices are specific to this window:

e Save! Save the current list of message senders and receivers.
o [isrardChanges!:. Discard changes to the list since the last save.

® Print! Print the current list of message senders and receivers.

Figure 1.17. OOA Tool Storvboard: Message Senders/Receivers

- Object Encyclopedia s

New! ReadEntry StructureDiagram! InterfaceDiagram!

STD! Delete Save! DiscardChanges! Print! Notepad! Help!

ClassName }

Description:

State Limitations:
Operations Provided:
Operations Required:
Exceptional Conditions:
Exported Constants:

Objects in Class:

Reuse Considerations:

Based On: Concept Maps, Event/Response List,

Story Boards, Object List

When the Object Encyc.! selection is choser. from the “Structure Reauirements” menu, the Ohject Encyclopedia
window appears. This window contains commands whickh aiiow the user to create entries in the object encyclopedia.
The window itself contains the tevtual information describing aspects of the class of objects.

The following mziiu choices are specific to this window:

e New!. Create a new entity to the object encyclopedia.

o ReadEntry: Reads an object encyclopedia entry a file.

o StructureDiagram!. Allows user to draw a structure diagram for the class of objects (see figure 1.19).
o InterfaceDiagram! Allows user to draw an interface diagram for the class of objects (see figure 4.20).
o STD! Allows user to draw a state transition diagram for the class of objects (see figure 4.22).

o Delete: This selection is usea to delete an entry in the object encyclopedia. The user is prompted fig (L
name of the entry to delete.

e Save! Save the current object :ncyclopedia entry.
o DiscardChanges!: Discard changes to the object encyclopedia entry since the last save.

o Print! Print the current entry of the object encyclopedia.

Figure 1.18. OOA Tool Storyboard: Object Fnevelopedia

- Object Encyclopedia AR

New! ReadEntry StructureDiagram! InterfaceDiagram! STD!

Objectlist! Save! DiscardChanges! Print! Notepad! Help!

— Structure Diagram: ClassName K
AddErtity! AddRelationship! Delete Move Save!

DiscardChanges! Print! Notepad! Help!

Based On: Concept Map, Object List

When the StructureDiagram! selection is chosen from the “Object Encyclopedia” window, the Structure Diagram
window appears. This window contains commands which allow the user to draw a structure diagram for a class
of objects. The initial position of the window allows the user to access the object encyclopedia menu to get other
information about the class of objects. The user may click on any of the components or attributes that make up the
class, and a window with the structure diagram for that class will appear. The bottom line of the window displays
the other method steps upon which the structure diagram is based. The scroll bar on the bottom and right hand
sides of th~ window allow the user to scroll through the diagram with a click of the mouse button.

The following menu choices are specific to this window:

o 4ddEntity: Adds a new entity to the structure diagram. The user is prompted for a label for the entity.
and is allowed to position the entity with the mouse.

o AddRelationship’. Adds a relationship between two entities. The user is prompterd for the label to attach 1o
the relationship, and is allowed to position the label with the mouse.

e Delete: This selection is used to delete an entity or relationship. After selecting this option, the user clicks
the mouse on the entity or relationship to delete.

o Move: This selection is used to move an entity. After selecting this option, the user clicks on the entity 1o
move, then drags it to its new location.

e Sare! Save the current structure diagram.
o [hscardChanges!: Discard changes to the diagram since the last save.

e Print! Print the current diagram.

Figure 4.19. OOA Tool Storyboard: Structure Diagram

- Object Encyclopedia ti4

New! ReadEntry StructureDiagram! InterfaceDiagram! STD!

ObjectList! Save! DiscardChanges! Print! Notepad! Help!

- Interface Diagram: ClassName AR
AddEntity! AddRelationship! Delete Move Save!
DiscardChanges! Print! Notepad! Help!

MessageName

= =

Based On: List of Message Senders/Receivers, Object List

When the InterfaceDiagram! selection is chosen from the “Object Encyclopedia™ window, the Interface Diagram
window appears. This window contains commands which allow the user to draw an interface diagram for a class
of objects. The initial position of the window allows the user to access the object encyclopedia menu to get other
information about the class of objects. The user may click on any of the classes receiving messages from this class,
and the interface diagram for the class will appear in a new window. If the user highlights the name of an incoming
message, a window will open with a list of classes that send this message (see figure 4.21). The bottom line of the
window displays the other method steps upon which the interface diagram is based. The scroll bar on the Lhattom
and right hand sides of the window allow the user to scroll through the diagram with a click of the mouse butt.n.
The following menu choices are specific to this window:

e AddEntity!: Adds a new entity to the interface diagram. The user is prompted for a label for the entity, and
is allowed to position the entity with the mouse.

e AddRelationship!: Adds a relationship between two entities. The user is prompted for the label to attach .
the relationship, and is allowed to position the label with the mouse.

o Delete: This selection is used to delete an entity or relationship. After selecting this option. the user clicks
the mouse on the entity or relationship to delete.

o Move: This selection is used to move an entity. After selecting this option, the user clicks on the entity to
move, then drags it to its new location.

e Sare! Save the current interface diagram.
o DiscardChanges!. Discard changes to the diagram since the last save.

o Print’ Print the current diagram.

Figure £.20. OOA Tool Storvboard: Interface Diagram

1-26

- Object Encyclopedia AR

New! ReadEntry StructureDiagram! InterfaceDiagram! STD!

ObjectList! Save! DiscardChanges! Print! Notepad! Help!

- Interface Diagram: ClassName AR
AddEntity! AddRelationship! Delete Move Save!

DiscardChanges! Print! Notepad! Help!

MessageName MessageName

ClassNamel

ClassName2

= =

Based On: List of Message Senders/Receivers, Object List

\When an incoming message is highlighted with the right mouse button on the interface diagram. a window 4y s
with a list of classes that send the message to this class. The user may likewise highlisht one of these class naone -
and a new window will appear with the interface diagram for the class.

Figure 1.21. OOA Tool Storyboard: Highlighting Incoming Message

¥ == e

Object Encyclopedia 4

New!

ReadEntry StructureDiagram'! InterfaceDiagram! STD!

Obje

ctlist! Save! DiscardChanges! Print! Notepad! Help!

State Transition Diagram: ClassName V)4

AddState! AddTransition! Delete Move Save!

DiscardChanges! Print! Notepad! Help!

1

[___,.

Based On: Concept Maps, Story Boards, E/R List

When the STD! selection is chosen from the “Object Encyclopedia™ window, the State Transition Diagram win:low

appears
whyects,
informa
the stat

. This window contains commands which allow the user to draw a state transition diagram for a class of

The initial position of the window allows the user to access the nbject encyclopedia menu to get wthie
tion about the class of objects. The bottom line of the window displays the other method steps upon whi iy
e transitior: diagram is based. The scroll bar on the bottom and right hand sides of the window allow .

iser to seroll through the diagram with a click of the mouse button.

I he following menu choices are specific to this window:

144S5tate ! Adds a new state to the diagram. The user is prompted for a label for the state, and is allowed
to position the state with the mouse.

444 Transttion!. Adds a transition between two states. The user is prompted for the label to attach o the
transition, and is allowed to position the label with the mouse.

Driste: This selection is used to delete a state or transition. After selecting this option, the user (li k- 1l
mouse on the state or transition to delete.

\fore This selection is used to reposition a state. After selecting this option, the user clicks on the ~taee 1
move, then drags it to its new location.

Nare!. Save the current state transition diagram.
DiscardChanges! Discard changes to the diagram since the last save.

Prnt’ Print the current diagram

Figure 1.22. OOA Tool Storvhoard: State Transition Diagram

0N

The window providing access to the cbject encyclopedia is unique in that it
takes up the entire screen. This allows more room for the sub-windows that can
be opened within the object encyclopedia. Again, the user has flexibility in how e
wants these windows displayed on the screen by clicking on the appropriate window

comimands.

The object encyclopedia window gives the analyst the following capabilitics:

e Adding textual information. This is done through the main window of the

ohject encyclopedia.
¢ Drawing a structure diagram for the class of objects (see figure 4.19).
e Drawing an interface diagram for the class of chiects (see figure 4.20).

e Drawing a state transition diagram for the class (see figure 4.22).

A major benefit of the OOA tool. as identified at the end of the previons
chapter. is to provide an ordering to the entries in the object encyclopedia. This
15 accomplished through the structure and interface diagrams. If the analvst clicks
the monse on a class of objects in either of these diagrams, the OOA tool will load
the object encyclopedia entry for that class of objects. If the class of objects does
not vet have an entry in the object encyclopedia. the user will be asked if he waunts
to start such an entry. This capability of clicking on ohjects or classes from thie
strictiure or interface diagrams allows the user to traverse the object encyclopedia
entries in a hierarchical manner. The analyst can thus load the highest level object

and traverse throngh the diagrams to view lower level «lasses.

5 ‘onchidor

The coneept maps and storyhoards in this chapter describe a tool to assist the
domain expert and/or analyst in applving the object-oriented | nalyvsis method. This
tool would also provide a means of viewing the entries in the object eneveiopedia i

a tierarchical manner.

£-29

V. Vulidation of the Object-Oriented Analysis Method

The concepts proposed in this thesis as an Object-Oriented Analysis Methiod
can be substantiated by applying the method to a sample analysis problem. Thix
chapter introdnces this sample problem and discusses the application of the method

to the problem.

The results of applying the OOA method to the sample problem can he an-
alvzed from a number of perspectives. The results will first be compared with the
goals of the OO\ method identified in chapter III. Also. the method will be com-

pared to the results produced by two other analysis methods proposed as a precursor

1o O0OD.

5.1 Analysis Problem Description

The example problem used to evaluate the OOA method is one which requires
the analysis of a typical elevator control system. The problem description. taken {romn
Nonrdon, 1989, was first used in a 1986 workshop sponsored by the Association of

Computing Machinery. The following paragraphs outline the problem.

The general requirement is to design and implement a program to sched-
nle and control four elevators in a building with 10 floors. The elevators
will be nsed to canry pespie from one floor to another in the conventional

way.

[fliciency: The program should schedule the elevators efficiently and
reasonably. For example, if someone summons an elevator by pushing
the down button on the fourth floor. the next elevator that reaches the
fourth floor traveling down should stop at the fourth floor to accept the
passenger(s). On the other hand. if an clevator has no passengers (no
ontstanding destination requests), it should park at the last floor it visited
until it is needed again. An elevator should not reverse its direction of
travel until its passengers who want to travel in its enrrent direction
have reached their destinations. (As we will see betow, the program

51

cannot really have information about an elevator's actual passengers;
it only knows about destination button presses for a given elevator. For
example, if some mischievous or sociopathic passenger boards the elevator
at the first floor and then presses the destination buttons for the fourth,
fifth, and twentieth floor, the program wili cause the elevator to travel
to and stop at the fourth, fifth, and twentieth floors. The computer and
its program have no information about actual passenger boardings and
exits.) An elevator that is filled to capacity should not respond to a new
summon request. (There is an overweight sensor for each elevator. The
computer and its program can interrogate these sensors.)

Destination button: The interior of each elevator is furnished with a panel
containing an array of 40 buttons, one button for each floor, marked
with the floor numbers (1 to 40). These destination buttons can be
illuminated by signals sent from the computer to the panel. When a
passenger presses a destination button not already lit, the circuitry hehind
the panel sends an interrupt to the computer (there is a separate interrupt
for each elevator). When the computer receives one of these (vectored)
interrupts, its program can read the appropriate memory mapped eight-
bit input registers (there is one for each interrupt. hence one for each
elevator) that contains the floor number corresponding to the destination
button that caused the interrupt. Of course, the circuitry behind the
panel writes the floor number into the appropriate memory-mapped input
register when it causes the vectored interrupt. (Since there are 40 floors
in this application, only the first six bits of each input register will be
used by the implementation; but the hardware would support a building
with up to 256 floors.)

Destination button lights: As mentioned earlier, the destination buttons
can be illuminated (by bulbs behind the panels). When the interrupt
service routine in the program receives a destination button interrupt. it
should send a signal to the appropriate panel to illuminate the appropri-
ate button. This signal is sent by the program’s loading the number of
the button into the appropriate memory-mapped output register (there
is one such register for each elevator). The illumination of a button noti-
fies the passenger(s) that the system has taken note of his or her request
and also prevents further interrupts caused by additional (impatient?)
pressing of the button. When the controller stops an elevator at 2 floor.
it should send a signal to its destination button panel to turn off the
destination button for that floor.

Floor sensors: There is a floor sensor switch for each floor for each ele-
vator shaft. When an elevator is within eight inches of a floor. a wheel
on the elevator closes the switch for that floor and sends an interrupt to
the computer (there is a separate interrnpt for the set of switches in each

N |
T
g

elevator shaft). When the computer receives one of these (vectored) in-
terrupts, its program can read the appropriate memory mapped eight-bit
input register (there is one for each interrupt, hence one for each elevator)
that contains the floor number corresponding to the floor sensor switch
that caused the interrupt.

Arrival lights: The interior of each elevator is furnished with a panel
containing one illuminable indicator for each floor number. this panel
is located just above the doors. The purpose of this panel is to tell the
passengers in the elevator the number of the floor at which the elevator is
arriving (and at which it may be stopping). The program should illumi-
nate the indicator for a floor when it arrives at the floor and extinguish
the indicator for a floor when it leaves a floor or arrives at a different
floor. This signal is sent by the program’s loading the number of the floor
indicator into the appropriate memory-mapped output register (there is
one register for each elevator).

Summons buttons: Each floor of the building is furnished with a panel
containing summon button(s). Each floor except the ground floor (floor 1)
and the top floor (floor 40) is furnished with a panel containing two sum-
mon buttons, one marked UP and one marked DOWN. The ground floor
summon panel has only an UP button. The top floor summon panel
has only a DOWN button. Thus, there are T8 summon buttons alto-
gether, 39 Up buttons and 39 DOWN buttons. Would-be passengers
press these buttons in order to summon an elevator. (Of course, the
would-be passengers cannot summon a particular elevator. The sched-
uler decides which elevator should respond to a summon request.) These
summon buttons can be illuminated by signals sent from the computer
to the panel. When a passenger presses a summon button not already
lit, the circuitry behind the panel sends a vectored interrupt to the com-
puter (there is one interrupt for UP buttons and another for DOWN
buttons). When the computer receives one of these two (vectored) inter-
rupts, its program can read the appropriate memory mapped eight-bit
mput register that contains the floor number corresponding to the sum-
mon button that caused the interrupt. Of course, the circuitry behind
the panel writes the floor number into the appropriate memory-mapped
input register when it causes the vectored interrupt.

Summon button lights: The summon buttons can be illuminated (by
bulbs behind the panels). When the summon button interrupt service
routine in the program receives an UP or DOWN button vectored inter-
rupt. it should send a signal to the appropriate panel to illuminate the
appropriate button. This signal is sent by the program’s loading the num-
ber of the button in the appropriate memory-mapped ontput register. one
for the UP buttons and one for the DOWN buttons. The illumination of

s}
T
-

a button notifies the passenger(s) that the system has taken note of his
or her request and also prevents further interrupts caused by additional
pressing of the button. When the controller stops an elevator at a floor,
it should send a signal to the floor’s summon button panel to turn off
the appropriate (UP or DOWN) button for that floor.

Elevator motor controls (Up, Down, Stop): There is a memory-mapped
control word for each elevator motor. Bit 0 of this word commands
the elevator to go up, bit 1 commands the elevator to go down, and
bit 2 commands the elevator to stop at the floor whose sensor switch
is closed. The elevator mechanism will not obey any inappropriate or
unsafe command. If no floor sensor switch is closed when the computer
issues a stop signal, the elevator mechanism ignores the stop :ignal until
a floor sensor switch is closed. The computer program does not have
to worry about controlling an elevator’s doours or stopping an elevator
exactly at a level (home) position at a floor. The elevator manufacturer
uses conventional switches. rclays, circuits, and safety interlocks for these
purposes so that the inanufacturer can certify the safety of the elevators
without regard for the computer controller. For example, if the computer
issues = stop command for an elevator when it is within eight inches of a
floor (so that its floor sensor switch is closed), the conventional, approved
mechanism stops and levels the elevator at that floor. opens and holds
its doors open appropriately, and then closes its door. If the computer
issues an up or down command during this period (while the door is
open, for example), the manufacturer’s mechanism ignores the command
until its conditions for movement are met. (Therefore, it is safe for the
computer to issue an up or down command while an elevator’s door is still
open.) One condition for an elevator’s movement is that its stop button
not be depressed. Each elevator’s destination button panel contains a
stop button. This button does not go to the computer. Its sole purpose
is to hold an elevator at a floor with its door open when the elevator
is currently stopped at a floor. A red einergency stop switch stops and
holds the elevator at the very next floor it reaches irrespective of computer
scheduling. The red switch may also turn on an audible alarm. The red
switch is not connected to the computer.

Target machine: The elevator scheduler and controller may be imple-
mented for any contemporary microcomputer capable of handling this
application.

The specification of this problem produced with the OO\ method is inclnded

as appendix A\,

(1
1
-—

5.2 Results of Applying the OOA Method

5.2.1 Comparison With Method Goals. The initial goals of the OOA method
were outlined in section 3.1. These goals are summmarized below, and examined with

respect to the application of the method.

5.2.1.1 Graphical Nature Of Tools. The tools of the method shouid
primarily graphical, with a notation that can be understood by domain experts witl

little initial training.

The OOA method’s communication with the domain expert is done predomn-
inately through concept maps (graphical), story boards (graphical with support-
ing text), and an event/response list (textual). Each of these tools is fairly un-
structured, with simple, flexible notation that requires little training to undcr-
stand. The fact that concept maps were used by elementary school children as
a means of communicating understanding attests to their shallow learning curve
[Novak and Gowin, 1984]. The text in the story boards and event/response list is
presented in short statements, making it easier for a reader to follow. Not only
should the domain expert be able to readily understand this material, he may well

be able to prepare the items in phase I of the method himself.

The more structured object encyclopedia entries will still be reviewed by the
domain expert(s), and thus need to be easily understood. The contents of the cn-
tries rely heavily on the graphical structure diagram. interface diagram. and ~tate
transition diagram. The syntax of these diagrams is similar to that of the concept
map, so they too should allow the reader to concentrate more on the meaning of the

diagram rather than the syntax.

5.2.1.2 Fase of Application. The method should be straiylitforward i

s application.

The OOA method includes some heuristics to apply the steps of the method.

~
T
S

A (W B 0 OE 2 B R b B e

Once the initial information is gathered from the domain expert (phase I of the
method), each of the steps taken to structure the information and create objec!

encyclopedia entries is based on information present from phase I.

One of the more difficult aspects of applying the OOA method is the necessity
to iterate between some of the steps in the method. For example, in the application
of the method to the elevator problem, the similarity between the UP and DOWN
request panels and each elevator’s control panel was not evident until these ciasses
were documented as entries in the object encyclopedia. Recognition of their parallel
characteristics required the revision of the preliminary object list (page A-30) and

the object encyclopedia entry for the control panel (page A-4R).

5.2.1.3 Identification of Objects, Attributes, and Object Interaction. The
method should support the identification of objects, their attributes. and the intcr-
action among objects. This necessarily includes documenting the object’s external

interface.

The method supports the identification of objects and their attributes from the
concepts on the domain expert’s concept maps. The identification of the interaction
among objects, or messages pacsed between them, is supported by the method via the
event /response list, as well as the linking verbs on the concept maps The objects.
attributes. and interaction among objects is further documented for each class of

objects in the series of entries in the object encyclopedia.

The key to identifying the objects and messages in the OOA method is in the
~onstruction of the concept maps, story boards, and event/response list in phasc [
This phase may require a considerable effort to document and refine the requirements

in order to adequately specify the problem.

[n the application of the OOA method to the elevator problem. the vast major-
ity (66 out of 75) of the concepts in the initial concept maps turned out to be directiy

related to objects or attributes documented in phase Il of the method. Likewise. all

of the event /response pairs in the event/response list resulted in at least one message

sent between object classes.

5.2.1.4 Top-Down Nature of Model. The model of the system should be

presented (n a top-down hierarchical manner.

As stated in chapter III, the levels of hierarchy in the description of the system
can be seen through the interface and structure diagrams in the object encyclopedia.
As seen in the description of the elevator control system, the entries in the object
encyclopedia are ordered by first describing the main object class (Elevator Control
System), then its component classes (Elevator, and Control Panel), before defining

the remaining classes (in alphabetical order).

The ordering of classes in the object encyclopedia is complicated by the nature
of object-oriented systems; there is not always a clear distinction between levels of
abstraction, and these levels are not as neatly organized into a tree structure familiar
in a functional description of a problem. Often, a lower level class (such as Weight or
Address in the elevator problem) is used by a variety of other classes in the system.
Also, an object of a certain class may send messages to other objects at different
levels of abstraction. For example, the interface diagram for the Confrol Panel class
(sce figure A.30) shows that a control panel object may send messages to higher level
objects (via the Button Pushed message), or lower level objects (e.g. Address, or an
Input Register). To further compound the problem, objects of the Control Panel class
may appear at different levels of abstraction. The UP and DOWN Request Panels are
logical components of the overall Elevator Control System. while an elevator control
panel is a component of the Elevator class. These complexities make it difficult 1o
hierarchically order the descriptions of the object classes in the object encyclopedia.
It was these complexities which prompted the idea for the traversal of classes through

the structure and interface diagrams via the OOA tool described in chapter 1\

ot
v

5.2.1.5 Support for Large, Fmbedded Systems. The method should sup-
port the definition of large embedded systems.

The application of the OOA method to the elevator problem demonstrates the
ability of the method to document the requirements for an embedded system. Indeed.
the event/response list, frequently used in the analysis of embedded sy<tems, proved
effective in identifying messages between objects in the QOOA method. However.
few software engineers would consider the elevator problem, though not trivial. to
be a “large” embedded system. Larger problems require the ability of the analyst
to present the details of the system in a hierarchical manner. Though not proven
decisively in the example included here, the OOA method and tool has the ability

to provide such hierarchical structuring, as discussed in the previous section.

5.2.1.6 Minimal Redundancy. Different method representations should

include minimal redundancy between them.

The second phase of the OOA method contains a great deal of the information
captured in phase I. However, this is expected since one phase follows from the
other, with the different phases aimed at communication with different audiences.
Potentially harmful redundancy occurs when different views within the same phase
of the method needlessly contain overlapping information. Some redundancy exists
in all methods where the same entity is viewed from multiple views. This redundant
information is difficult to keep current when changes are made to one view of the
entity,

In phase [of the OOA method, an indication of a message between objects
may show up in each of the event/response list, story boards. and action verb links
on the concept maps. However, each of these views contains different information
about the messages. The event/response list describes the message as well as any
response that is undertaken as a result of receiving the message. The concept map

deseribes the message in terms of its relationship with its sender and receiver. The

story boards place the message in context with other messages and the state of the
entities in the system. Thus, while the existence of a message may be known from

different views, each of these views contains different information about the message.

In phase II of the OOA method, there is some redundancy in the information
provided on the interface diagrams. The messages that show up leaving one entity
must show up in the interface diagram of the receiving entity. For example, the
Direction Of message from the Eievatsr Control System class to the FElevator class
must show up on the interface diagram (figure A.24) and messages sent list (page \-
36) of the Elevator Control System, as well as the interface diagram (figure A.27)
and messages received list (page A-41) of the Elevator class. However. the repetition
is inevitable if the requirements specification is organized such that the description
of each class is localized. This organization makes it easier to map the analysis into

an object-oriented design.

Thus, while there is some replication in the information contained in different
diagrams in phase II, this redundancy is minimal and is caused by attempts to
satisfy other goals. The redundancies that do exist can be exploited by the OOA
tool presented in chapter IV to check the consistency of the object classes with each

other.

5.2.1.7 Mapping Into OOD. The result of the method should map cleanty

imto a *Booch-flavored” object-oriented design.

Viewing the entries in the object encyclopedia for the elevator problem. the
mapping into an object-oriented design is fairly obvious. FEach documented class
of objects in the nbject encyclopedia (except for the external entities that have no
software driver) will likely show up as objects in the design. Also, each of the docu-
mented classes contains enough information about the class’s behavior and external

mterface to design the class.

39

5.2.2 Comparison With Other Analysis Approaches. The “elevator prob-
lem” has been used to illustrate other analysis tools, including [Yourdon, 1989] and
(EVB, 1989]. This enables a comparison of the OOA method to these methods as a

precursor to object-oriented design.

5.2.2.1 Modern Structured Analysis. Although Yourdon makes no
claims as to the applicability of Modern Structured Analysis as a precursor to object-
oriented design, Booch maintains that data flow diagrams (even developed with a
functional approach) are appropriate to capture the problem space for an object-
oriented design [Booch, 1986:212]. Also. the abstraction analysis process proposcd
by [Seidewitz and Stark, 1987] begins with the data flow diagrams produced during

structured analysis.

The high level data/control flow diagrams for the elevator problem. taken from
[Yourdon, 1989], are shown in figures 5.1 through 5.4. These diagrams provide a feel

for how the problem is modeled using Modern Structured Analysis.

Looking at the these figures, it becomes readily apparent that the data/control
flow diagrams do not map well into an object-oriented design. While some of the
lower-level objects can be discerned from the data stores, it is more difficult to
identify the mid-level objects. Furthermore, the messages sent and received by cach
object are not obviously grasped from a single data flow diagram. A significant
amount of additional effort must be applied to transform these data/control flow
diagrams (as in [Seidewitz and Stark, 1987]) into a specification appropriate for an

object-oriented design.

5-10

System

enable/disable

Requests

summons-request request.received

summons.indication

destination-request

destination-indication

3

Schedule
Elevator

destinations.

System

enable/disable

Overload

floor.reached

elevatcr— reschedule. pending
statuses o clevator
. . {
fcor. - destination-
reached, schedules

2
Control
Elevator

(control)

Floor

System enable/disable

Arnivalaadication

Overload

Elevator.up.control

» v

‘-

FElevator-stop-control

+ Elevator.down.contro!

Figure 5.1, Schedule and Control Elevator: Flevator
[Yourdon, 1989:638]

5-11

Fssential - Maodel

-

S B B &N & A B s & B

summons.request

summons.indication

summons-request.
received

floor-reached

1.1

destination-request.received

.

* floor.reached

© destination-requiest

destination-indicating

»
Manage 1.2
Summons Elevator- Ménagg
Request statuses Destination
Request
<4
- 4
System System
enable/dizable enahle/dn:\!;\'-
y
Summons- Destination-
requests requests

Figure 5.2. Store and Display

Request [Yourdon. 19%9:639]

System enable/disable

2.1
Manage

Elevator
Destinatio

overioad destinations.pending

eleVa‘tor— * enable/disable

statuses

destination-

Destinasion-

schedule. . schedules

compleded

destination-

direction

reschedule.elevator

i
2.2
Floor Manage floor-reached
N . e e -
Floor

Arrival

Arrival-indication

" Elevatnr.up.control

»

Flevator-stop-control

¥ Flevator-down.control

Figure 5.3. Control Elevator [Yourdon. 19%9:613]

Summons- Destination-
Pequests Requests
Summons-request. System
. .recelved System-) . L enable/disable

enable/disable .

Destination-

’

Overload requesi.received
3.1 » -
Manage : :
Destination- Manage
Summons : ;
Schedule Schedules Destination
Schedule
R 4
Elevator-
Statuses
Destination.
Resechedule-
schedule.pending
sievitor : . <4
Floar-reached *
14

- . Floor.reached
Summons.schedafe.pending

Figure 5.1. Schedule Elevator [Yourdon. 1989:619)

S-11

5.2.2.2 FEVB's Object-Oriented Requirements Specification. The OO\
method presented in this thesis produces a model with some similarities to EV 'S
Object-Oriented Requirements Specification (see section 2.3.2.1). The closest reseim-
blance comes in the use of a multi-dimensional view of each class of objects. The
object encyclopedia entries presented here share many common characteristics with

EN'B's object class specification (OCS).

Despite the similarities between the two specifications, there are some fundau-
mental differences in two approaches. First, the EVB approach provides few gnide-
lines for identifying object classes and developing the set of object class specifications.
EVB provides some “hints” for starting an object-oriented requirements analysis.
both from scratch and from an existing set of requirements. but these “hints™ are
not developed into a set of specific steps and heuristics to guide the analyst. The
steps of OOA method presented in this thesis attempt to provide the analyst with a

more deliberate approach to modeling the system requirements.

The OOA method recognizes a need for communication with both domain ex-
perts and designers. The object encyclopedia entries (and EV'B OCSs) are structured
representations aimed at presenting information to the designer. The OOA method
also includes valuables tools for communication with the domain expert(s). The
concept maps. story boards. and event/response list provide a more unstructured
representation of the system which is often easier for the domain expert to follow

fand construct), and also serves as a basis for the more structured models.

The organization of the OCSs in EVB’s approach is based primarily on the
class’s potential for reuse. While the method of this thesis recognizes the poten-
tial of reusable components, it places more consideration in the ordering of class
deseriptions based on the system hierarchy, especially through the nse of the OO\

tool.

Finallv. the OOA method contains an interface diagram in the object eneyelo-

pedia entries. This diagram, lacking in the EVB OCS, provides a graphical view of

S-15

the class in terms of the messages sent to and received by other classes. This diagram
can provide a valuable insight at a glance into the interaction among object classes

in the system.

3.3 Conclusion

The application of the object-oriented analysis method on the elevator prob-
lem demonstrates the viability of the method in analyzing the requirements of an
embedded software system. The combination of the concept maps, story boards. and
event /response list captures both the problem elements and their interaction. in an
unstructured format readily understandable by the domain experts. In addition. the
metnod’s structuring of this information into object encyclopedia entries provides a
more straightforward mapping into an object-oriented design than a more traditional

(functional) analysis method.

5-16

VI. Conclusions and Recommendations

The final chapter of this thesis begins with a summary of the goals and ob-
jectives which guided this research. Next, conclusions are presented based on the
investigation into and application of object-oriented analysis techniques. The chap-
ter concludes with a list of areas recommended for further research +,llowing from

this study.

6.1 Summary

The main goal of this thesis was to develop an Object-Oriented Analysis (00 A\
method to model software requirements as a precursor to object-oriented design. The
research was in part inspired by the work of [Barnes, 1988]. who recommended the
use of the concept map as a tool to replace the informal strateqy as a representation

of the problem space.

This thesis was guided by the series of objectives outlined in chapter I. The first
objective was to determine the requirements of an object-oriented analysis method
in terms of the information the method should capture. These requirements were
gathered by reviewing the existing literature. The topics covered by this examina-
tion included the application of object-oriented techniques to the coding and design

phases of the life cycle, as well as various approaches to requirements analysis.

The next objective was to define the steps which would specify the OO\
method. These steps were defined by first selecting the tools needed to represent the
information deemed appropriate during OOD, as identified in the literature review.
The OOA method viewed the requirements analysis process as a bridge of communi-
cation between domain experts and a designer. In light of this. the method tools were
selected to be straightforward in syntax (so that domain experts wounldn’t he over-
whelmed with unfamiliar symbols). vet structured in final form (so that the designer

wonldn’t he overwhelmed with problem complexity). Concept maps. story boards,

6-1

and an event/response list capture the software requirements from the domain ex-
pert. A series of entries in the object encyclopedia for each class of objects serves
to communicate the analysis to the designer. The specific method steps evolved.
through application on various sample problems, to traverse from one representation

to the other.

The OOA method was then examined to see how it could benefit from au-
tomated support. Decision Support System (DSS) concepts were applied to define
the nature of a tool to support the OOA method. The greatest areas of potential
support would be the tool’s ability to traverse the hierarchy of object encyclopedia

entries, and perform consistency checks on the model of software requirements.

The final objective was to validate the concepis of this research by applving
the OOA method to a sample problem. The method was evaluated with respect to
the initial method goals, and the results of the analysis compared to those obtaine

through other methods.

6.2 Conclusions

The concept map is a viable tool for identifying objects and classes of objects
in the problem space. The informal syntax of the concept map makes it ideal for
communication between an analyst and a domain expert. However, it is not sufficient
for specifying the entire problem. The concept map is useful for showing structural
relationships among objects, but is weak for describing the dynamic interaction
among objects. Therefore, the concept map must be used in conjunction with other
tools (such as story boards and the event/response list) to fully capture the breadtl

ol information required during object-oriented design.

The complex nature of an object requires a sophisticated set of tools to rep-
resent the information needed to design it. An object contains elements from both
the information and functional domains. and cannot be fully characterized by one

view alone. Traditional functional analysis tools. such as the data flow diagranm.

~

6-2

are therefore not sufficient in themselves to adequately represent objects since they
concentrate on only one dimension. Furthermore, even when these tools are used in
combination with other tools which capture the missing dimension. they are often
unclear to the designer because they lack a one-to-one mapping between objects and

entities on the diagram.

Perhaps the most significant innovation resulting from this thesis is the use of
the event/response list in identifying messages passed between objects. This vehicle
provides a description of the interaction of the software to its external environinent.
Each external event in the list (excluding periodic events) corresponds to a message
passed to a particular object. The responses to these events suggest the existence of

additional messages passed between objects.

A somewhat surprising conclusion is that the functional and object-oriented
views may not be as detached as Booch seems to imply. At the highest levels of
abstraction, an actor object’s state may be composed entirely of the states of its
component objects. At this level, it becomes difficult to distinguish between an
actor object and a process. Often, the distinction is more one of nomenclature
rather than substance, as in the difference between an “elevator scheduler” o_l)jvct

and a “scheduie elevator” process.

Finally, an interesting observation resulting from this research deals with the
topology of an object-oriented design verses that of a structured design. The result
of applying structured design is typically a tree-shaped network of modules in a
structure chart. The set of sub-modules which compose the parent module (those
which stem {from it on a structure chart) is identical to the set of modules the parent
calls. On the other hand. the topology of an object-oriented design is more like
that of a directed graph. In an object-oriented design. the set of objects receiving
messages from a particular object is potentially greater than the set of sub-objects
which compose that object. In other words, unlike a module in a structured design.

it 1s not nnusual for an object to interact with other objects at the same (or even

-3

higher) level of abstraction. This characteristic makes it more difficult to distinguish

between levels of abstraction in an object-oriented design than in a structured design.

6.3 Recommendations

First and foremost, the OOA tool should be designed and implemented to
further apply and test the OOA method developed in this thesis. The availability of
a software tool to assist in the application of the method not only would make it easicr
to apply the OOA method, but would also facilitate the analysis of larger systems.
With this experience, further evaluation of these concepts can be undertaken. The
description of the tool presented in chapter IV provides a basis for the design and

implementation of the tool.

A more comprehensive evaluation of the OOA method should be performed.
This thesis demonstrated an approach to an object-oriented analysis of the problem
space that intuitively seems more appropriate for use with COD. However, the true
benefit of a good approach to requirements analysis is not seen until later in the
project life cycle, when analysis errors can have a great impact on the quality of the
software. Further evaluation should compare the results of this method to that of
vther methods, not only during the analysis phase, but throughout the project’s life

cycle.

More research needs to be done into the practical aspects of applying object-
oriented design to real-time embedded systems. Issues such as interrupt handling and
concurrency are not emphasized by Booch in his definition of object-oriented design.
The presence of distributed processing in many such applications makes concurrency
an especially important issue. To date. few guidelines exist to assist a designer in
introducing concurrency into an object-oriented design. This may be a result of
the limitations of traditional object-oriented languages (e.g. Smalltalk) which lack
features to manage concurrent processing. The existence of tasking in Ada. however.

enables the implementation of concurrent object-oriented programs. Potentially, all

6- 1

D & B o U = .

objects in a system could execute concurrently; however, efficiency considerations
impose limits on this strategy. Further research needs to be undertaken to provide

heuristics for employing concurrency in the object-oriented paradigm.

An interesting observation during the course of this research calls for further
investigation. In Booch's definition of object-oriented design as it applies to Ada.
an object presents a uniform interface to all who have visibility to it. Objects may
receive the same messages from other objects, whether they are at higher. lower. or
the same level of abstraction. However, the information hiding principle seems to
warrant a different view of the object from different levels of abstraction. Further
research can provide an insight into what avenues, if any. should be taken to give an

object greater flexibility in presenting its interface to different levels of abstraction.

One of the assumptions of the OOA method was that the domain expert has
previously defined the software requirements; the analysis method only captures
those requirements and adds structure to them for the design activity. Further
research needs to be done in the psychological and procedural aspects of constructing
the initial concept maps, story boards, and event/response lists to define a complete

set of requirements.

Finally, the issue of reusability needs to be addressed. One of the potential
benefits of the object-oriented paradigm is in the reuse of object classes. After all.
the set of predefined classes is one of the key strengths of object-oriented languages
such as Smalltalk and Actor. The issue of reuse seems to warrant application at
the organizational level as well as the project level. Clearly, the search for reusable
components shonld be undertaken at the project level. during the analysis or design
activities. However, the decision to expend the additional resources required to de-
sign a component to be reusable is not as clear—this decision is as much managerial
as technical. and is influenced by the requirements of other projects in the organiza-
tion. Currently. the object encyclopedia entries contain an assessment of the class's

rense potential. The advancement of a more complete framework for identifving,

65-5

designing, and applying reusable object classes needs to be investigated.

6.4 Closing Remarks

The successful application of object-oriented design depends on a complete
model of software requirements. The object-oriented analysis method presented in
this thesis constructs such a model. Furthermore, the information contained in this
model is structured around the objects in the problem space. This organization fur-
nishes a more straightforward mapping into OOD than functional analysis methods
such as Structured Analysis. The OOA method also provides more guidelines and
structure for the designer than the informal strategy method originally proposed by
Booch, while striving to maintain a more unstructured, graphical means of commnu-
nication with the domain experts. The OOA method presented here yields a basis
for application and further study in object-oriented requirements analysis. object-

oriented design. and the proper use of Ada language constructs.

6-6

Appendix A. Analysis of an Elevator Control System

A.1 Purpose of Elevator Control System

The purpose of the elevator control system is to schedule and control four
elevators in a building with 40 floors. The elevators will be used to carry people

from one floor to another in the conventional way.

The elevator control system receives signals from summons panels on cach
tloor, and command panel buttons and floor sensors associated with each elevator.
[t controls the movement of the elevators and the setting of lights on the summons

panels and elevator control panels.

The elevator control system will only control the movement of the elevators
from floor to floor. The computer program does not have to worry about controlling
an elevator’s doors or stopping an elevator exactly at a level (home) position at a
floor. The elevator manufacturer uses conventional switches, relays. circuits. and
safety interlocks for these purposes so that the manufacturer can certify the safety
of the elevators without regard for the computer controller. For example, if the
computer issnes a stop command for an elevator when it is within eight inches of
a floor, the conventional, approved mechanism stops and levels the elevator at that
floor. opens and holds its doors open appropriately, and then closes its door. If
the computer issues an up or down commaud during this period (while the door is
open. for example). the manufacturer’s mechanism ignores the command until its

conditions for movement are met.

A2 Concept Maps

The concept maps on the following pages describe the components of the cle.

vator control system.

A-l

Elevator

contains a Control

controls

Scheduling
Algorith

signals

lights

signals

stops at

Request
Panel

Buttons on each

Figure A.1. Overall Elevator Control System

i B =N S E N Al I EE e

) scheduLes
Scheduling eac

has Algorith

Efficient

Reasonable

1T 7

contains

Down

nfluenced by

influenced
by
has
influenced
by
Outstand
equest
/
A '\ is at a \
adds to o y
Vestination
1st

has Elevator
Request

Panels

Down

Figure A.2. Scheduling Algorithm

ID

Number

Elevator
Motor

Load
Capacity

direction

can he

down

has a

has an

has a

has a

can be

Elevator

has a

Destination
List

has a

contains

has a

has an

Elevator

controlled

by

148

controls

Loocation
Panel

Weight

Sensor

examines

Flevator
Control

signal

Floor
Sensors

on each

Figure A.3. Elevator Components

A-1

inhibited by Elevator

Motor

/responds to

handled by

can be

controlled
by

Output
Register

Figure A4, Elevator Motor

for each

Floor

for each
Sensors

Interrupt

to

Figure A.5. Elevator Floor Sensors

A-6

Elevator
ontrol

ends
contains
contains causes
Buttons
_ for each
disables)) to
behind gntains
Lights j for each
reads
controls
writes Elevator
Control
ysten

Fignre A6, Llevator Control Panel

in each

Location

contains

—

ths ont I‘OlS

Output

for each Register

—

Floor

Control

Elevator

Figure A.7. Elevator Location Panel

A-R

examines contains

Elevator

Control
System

contains

Hundreds of pounds

Figure A.8. Elevator Weight Sensor

Up
Request

4})(3

Down

Request
Request Pane
Panel as specific
. sends
contains
contains causes
Buttons
for each
behind gntains to
for each
reads
controls
writes Elevator
Control
xstem

Figure A.9. Elevator Request Panel

A-10

A.3 Story Boards

The story boards on the following pages describe some of the situations that
the elevator control system will face. The story boards show: 1) the status of onc
of the four clevators (including the location and control panels, direction of travel.
motor commands, etc.); 2) the up and down request panel buttons from each of the

floors; and 3) the scheduling algorithm’s list of outstanding summons requests.

Elevator 1 (of 4)

Location Panel Control Panel
0006600 .. BY 2
5888888 . 08 88 8

Direction: Parked
Motor Command: —
Floor Sensor: At Floor 1

Overweight: No
Destination List:

Up Down
Request Request

Elevator
fanel Pane Scheduler
Floor 40: .
] Outstanding
Floor 39: Requests

Floor T:
Floor 6:
Floor 3:
Floor 4:
Floor 3:

Floor 2:

O[OlO[0]|0|O|O] |00
O[O[O[O|0|0O|O] |0]|O

Floor 1:

L

Each of ihe four elevators has a location panel (showing where the elevator currently is) and a rantrod pane!
with buttons for the passengers to enter their destination floor. Lights behind the buttons are lit when the Loctan
s pressed. Also associated with an elevator are a direction of travel, commands to the elevator's motor. a ~enso
signalling which floor the elevator is approaching, an overweight sensor. and a list of destination floors selected by
the cievator’'s passengers.

The request panels contain buttons for passengers to summon an elevator. The UP Request Panel contains
buttons on all loors except floor 40. Likewise, the DOWN Request Panel contains buttons on all floors exeepn
Hloor 10 The passenger will press the button on either the UP ar DOWN Request Panels, depending on his desited!
direction of travel. The buttans have lights behind them which are lit when the button is pressed.

The ddevator control system maintains a list of outstanding requests from the request panels, which i vnses
schiedule elevatars 1o respond to these requests.

Vncidle elevator s characterized by having “parked™ as its direction. In this case, elevator 1is pavked an (fos
Foawaating a conumand from the elevator control system to respond to a summons reuest.

Fignre A.10. Story Board: Idle Flevators

A-12

Elevator 1 (of)

Location Panel

Control Panel

oYelelelololo Rk ole

38888838 . &8

elofolo

3I33)

31999
OO0
® OO0

Floor 7:

Floor 6:
Floor 5:
Iloor 4:
Floor 3:
Floor 2:

IFloor 1:

ololololololo] |oloE

O|O|®|O|0|O|0] 0|0

Direction: Up

Motor Command: Up

Floor Sensor: At Floor 1

Overweight: No

Destination List:

Up Down
Request Request Elevator
Panel Scheduler

Fl 40:

oor Outstanding
Floor 39: Requests

U

I'he 1P Request Panel button on Anor 3 is pressed. The elevator control system will:

o illuminate che light behind the “up” button of the request panel on flonr 3.

o add the request (3U) to the list of outstanding requests,

pick an elevator to respond to the request. Since all elevators are currently idle, the closest elevator to the

summons (in this case elevator 1} is sent.

isste an “up” command to elevator 1.

st elevator s direction to “up”.

Figure A.11. Story Board:

A-13

Up Reqguest from Floor 3

Elevator 1 (of 4)

Location Panel Control Panel

5556660 88| [RQ QR
3 388883.. BY

@ O
0D
® OO0

© OO

Direction: Up

Motor Command: Up

Floor Sensor: At Floor 2

Overweight: No

Destination List: .

Up Down
Request Request Elevator
Panel ~ Pane Scheduler
Fl 40: O
oot O Outstanding
Floor 39: O O Request.s
3 3U

Floor T: ® 3

Floor 6:)

Floor 5:))

Floor 4: @, o

Floor 3: ® O

Floor 2: @) O

Floor 1: O O

Ui Goor senscr tor Torator ' ocgnal arilv o u vie i ont L dloor 20 The elevator cowsrol system will:

e extinguish the light for floor 1 on the location panel of elevator 1.

o tlluminate the light for floor 2 on the location panel of elevator 1.

Figure A.12. Story Board: Elevator Arrives at Floor 2

A-11

Lhe floor sensor for elevator 1 signals arrival of the elevator at floor 3. The elevator control system will:

Elevator 1 (of 4)

Location Panel Control Panel

0556565 .. BB BB R

3358585 68 (3

Direction: Up €
©

Motor Command: Stop
Floor Sensor: At Floor 3
Overweight: No
Destination List:

Up Down
Request Request Elevator
Panel ane Scheduler
B l :
Floor 40 Outstanding
[loor 39: Requests

Floor 7:
Floor 6:

Floor 3:
Floor 4:
Floor 3:

o

Floor

O[|O|O|O|0[0O(0] 0|0
O|O[|O[O|0|0|0] |OlO

Floor 1:

o extinguish the light for floor 2 on the location panel of elevator 1.

liminate the light for Hoor 3 on the focation panel of elevator 1.
issue a Ustop” command to elevator 1.
~xtingnish the light behind the button on floor 3 of the UP Request Panel.

temove the 317 request from the scheduling algorithm's list of outstanding requests.

Fignre A 13, Story Board: Elevator Arrives at Floor 3

A-15

Elevator 1 (of 4)

Location Panel Control Panel

bBOLEES . BB| (Y IR
3888888.. B8] |Q
€
©

Direction: Up
Motor Command: Up
Floor Sensor: At Floor 3

Overweight: No
Destination List: 29

Up Down
Request Request Elevator
Panel Pane
Scheduler
I'loor 40: O O Outstandi
utstandin
Floor 39: O O Requests i
. Ol 110
Floor T:
Floor 6: o O
Floor 3: O Qo
Floor 4: O O
Iloor 3: O O
Floor 2: ®) O
Floor 1: O O

[he passenger press<es the button for floor 22 on the control panel in elevatar 1. The elevator control system will

s illuminate the light behind button 22 on the control panel for elevator 1.
o add Hoor 22 to the destination list for elevator 1.

e 1ssue an Cup’ command to elevator 1.

A~ ebevatar [rises, its floor sensors will signal the elevator control system to change the lights on elevator 1's locanon
pianel acoordingly, as in the story board in figure A3.

Fionte AJ14 Story Board: Passenger Presses Destination Button

A6

Elevator [(of 4)

Location Panel Control Panel

55bbbb0.. B8] (23K
3888888 BB IBQ
Direction: Up @ @

el

Motor Command: Up
Floor Sensor: At Floor 3
Overweight: No
Destination List: 22

Up Down
Request Request Elevator
Panel .

Scheduler

Floor 40:
Floor 39:

Outstanding
Requests

5U
6D

Floor 7:
Floor 6:

Floor 5:
Floor 4:
Floor 3:

Floor 2:

O[O[|O[O|®|0|0] O[O
O|0|0|0|0®(O] 0|0 B

FFloor 1:

Additinnal elevator summons requests are issued from Hoor 5 (up) and floor 6 {down). The elevator control sy~tem
will

ithnminate the light behind the floor 5 button on the UP request panel.

himinate the light behind the floor 6 button on the DOWN request panel.

add the requests (507 & 6D) to the list of outstanding requests.

pick an elevator to respond to these recurests. Since there is currently no elevator heading down. v parcked
rlevator will he sent to respond to the “6D" request. Since elevator 1 is heading up towards Hoor 5.6t may
Leable to handle the *5U" request. However, the elevator control system may also send a parked eievat.over.,

respond ta this request since elevator | may be delayed {or some reason (e.g. overload or emergency <togn
Fhe first elevator to reach floor 5 heading up will respond to the request.

Figure A15. Story Board: More Summons Requests

A-T7

Elevator 1 (of 4)

Location Panel Control Panel

LOOEEES . BY| QL KA
690939 ‘)505)‘ 3(%8 88
Direction: Up cla)

el

Motor Command: Stop

Floor Sensor: At Floor 5

Overweight: No

Destination List: 292

Up Down
Request Request
Panel Elevator
Scheduler
Floor 40:
. Outstanding
Floor 39: Requests
6D

Floor T:
Floor 6:

Floor 3:

5
Floor 4:
Floor 3

Floor 2:

ololo|olololo]| |olo
olololoolelo| [o|oE

Floor 1:

» Hoar sensor for elevator 1 signals arrival of the elevator at floor 5. The elevator contral system will:

¢ oxtinguish the light for floor 4 on the location panel of elevator 1.

e (Huminate the light for floor 5 on the location panel of elevator 1.

& 1ssne a Ustop” command to efevator |

o «xtingni~h the light behind the floor 5 button of the U'P request panel.

o cemove the SU request fram the scheduling algarithm's list of ontstanding requests.

Figure A.16. Story Board: Elevator Arrives at Floor 3

AN

Elevator 1 (of 4)

Location Panel Control Panel

LOOLELS . 1¥B| [BR YK
3388888 . B8

&) WO
OO
© OO
O399

Direction: Up
Motor Command: Stop
Floor Sensor: At Floor 5
Overweight: Yes
Destination List: 29 36
Up Down
Request Request Elevator
Panel Scheduler
Floor 40: .
Outstanding
Floor 39: Requests

6D

Floor T:
Floor 6:
Floor 5:
Floor 4:

IFloor 3:

o

Floor 2:

ojolo|oloo|of |ofo
ololojojololo| |ojo E

Floor 1:

Lhe passenger presses the button for floor 36 on the control panel in elevator 1. However, the elevator is overloade
[he vlevaror control system will:

e illuminate the light behind button 36 an the control panel for elevator 1.
e add Hoor 36 to the destination list for elevator 1.

o penodically (approx. every 5 seconds) check the weight sensor and compare with the elevator's nucanm

capacity,

Since the elevarar is overleaded. it will not respond to commands from the elevator control system nnal the overlond

Conchition s resolved,

Figure A.17. Story Board: Elevator Overload

A-19

Elevator 1 (of 4)

Location Panel

Control Panel

0000060 . BY

3888888 .. 66

Direction: Up
Motor Command: Up
Floor Sensor: At Floor 5
Overweight: No
Destination List: 922 36
Up Down
Request Request Elevator
Panel ng Scheduler
[40:
oot Q Outstanding
Floor 39: O @) Requests
6D
[Floor 7: O 8
I'loor 6: ~Q— ——
Floor 5: O)
Floor 4: O O
['loor 3: @) Q
Floor 2: ©) O
Floor 1: O O

Flevuor Tis no longer overloaded. as indicated by the overload se
carnened fram the elevator control svstem,

Figure AU18. Story Board: Eleva

A-20

nsor. The elevator will now respond to an ap”

tor Load Lightened

Elevator 1 (of 1)

Location Panel

Control Panel

0000L6S .- BY

SEEE888 .. 68

Direction: Up
Motor Command: Up
Floor Sensor: At Floor 6

Overweight: No
Destination List: 2236

[loor 40:
loor 39:

Up Down
Request Request
Panel [Pane

Elevator
Scheduler

O[O

Outstanding
Requests

-1

Floor

I'loor 6:

Hoor 5:

I'loor

— -

FFloor 3:

t<

Floor «

O[OIO[O[O[O0f 0|0
o)(e][e][e][e][I)[6;

6D

[“loor 1:

s Al sensor Tor elevator 1 signals arrival of the elevator at floor 5. The elevator control system will

cuningnnsh the light for floar 5 an the location panel of elevator 1.

dlunare the tight for Boor 6 on the location panel of elevator 1.

i the summaons on Roor 6 s “down™ . Flevator 1 will not stop for a “down™ request antil o0 0
oAt the ap”t direction

ST

Toa i

hanue the lights on elevator 15 Leation panel accordingly, as in the story haard in hiear

[Fiovure NT9 Store Board: Flew

Flevator 1 will continue to rise: its loor sensors will signal the o0

itor Passes Floar 6

i

st

BTN

Elevator 1 (of 1)

Location Panel

Control Panel

0000000 .. BY

OEBEEES . 66

Direc tion: Up

Motor Command: Stop

Floor Sensor: At Floor 22
Overweight: No
Destination List: 36

Up Down
Request Request
Panel ane

Elevator
Scheditler

Floor 40:
I'loor 39:

Outstanding
Requests

Floor 7:

Iloor 6:

Iloor 3:

5)
[loor t:
3

Floor 3:

o

Floor

O[O|0]|0|0|O[0] 0|0
O|0]0]|0|0|®I0] 0|0

6D

Floor 1:

xtimzash the light for floor 21 on the location panel of elevater 1.

iihimrnate the ight for floor 22 on the location panel of levator 1.

i~=ue A Csten” command to elevator 1.

Frenre A200 Story Board: Flevator Arrives at Floor 2

beetieation hist for elevator 1is not empty, watt b seconds and issae an “ap™

catongnsh the light behind button 22 of the control panel of elevator |

command to

)

< Hoor sensor for elevator 1signals arrival of the elevator at floor 22, The elevator control svstem will:

v

flevator 1 (of 4)

Location Panel

Control Panel

eleleleloYelo R olo

OOS8E8E .. 68

ejefolo

Direction: Park
Motor Command: Stop

Floor Sensor: At Floor 36
Overweight: No
Destination List: __

@ OO
OO0
® OO
© O

Up Down

[loor 40:
I'loor 39:

Request Request Elevator
Panel Pape Scheduler
Outstanding
Requests

=3

Iloor

>

Floor

Floor :

I'loor

-l e Ut

Floor 3:

Floor 2:

O[O[O[O]|0|0O|0] 0|0
O[|O[|O[0|0|0|0| 0|0

Iloor 1:

e xninguish the light for floor 35 on the location panel of ele
o llurmate the light for floar 36 on the location panel of ele
o i~-ieoa sdep” command to elevator 1.

o oatinagsh the light behind button 36 of the control panel «

Far floea oy the direction of elevator 1 s set to park.

Froure N210 Story Board: Flevator Arrives at Floor 36

<t sensar for elevator 1 osignals arcival of the elevator at loor 36, The elevator control system will:

vator 1.

vator t.

f elevator 1

cothe destination list for elevator 1is now empty and there are no ontstanding requests (some orhe

ot

}

A

Fyentl:

Resp.la:

R1b:

Rle:

Rld:

R2e:

R2d:

R3a:

1234

23

; Lrent/Response List

A passenger issues an “up” summons from a particular floor {inter-
rupt).

Read the Up Summons input register to determine the floor number
where the request was made.

[lluminate the light behind the button on the UP summons request
panel.

If there is an idle (parked) elevator, send it to the floor where the
summons was issued.

Add the request to the list of outstanding requests.

Average response time: The elevator should arrive at the floor
in an average of 20 seconds.

.2: A passenger issues a “down” summons from a particular floor (in-

terrupt).

: Read the DOWN Summons input register to determine the floor

number where the request was made.

o Illuminate the light behind the button on the DOWN summons

request panel.

If there is an idle (parked) elevator, send it to the floor where the
snmmons was issued.

Add the request to the list of outstanding requests.

Average response time: The elevator should arrive at the floor
in an average of 20 scconds.

A sensor for an elevator signals its arrival at a particnlar floor (in-
trrrupt),

Read the floor number from the floor sensor inpnt register for than
clevator.

Extingmish the light on the location panel for the elevator for the
previous floor.

Huminate the light on the location panel for the current floor.

R3d:

R3e:

E:

Ria:

Rdb:

R5b:

[6:
R6:

If the floor is listed in the destination list for the elevator, then
stop the elevator at the floor and extinguish the light behind the
floor number on the elevator’s control panel. After stopping, wait 3
seconds, then proceed to the next destination.

If the floor and direction are listed in the outstanding request list.
then stop the elevator at the floor. Extinguish the light behind the
floor button on the proper request panel, and remove the summons
request from the outstanding request list. After stopping. wait 3
seconds, then proceed to the next destination.

Maximum response time: 0.1 second.

A passenger presses a destination button on the control panel of a
particular elevator (interrupt).

Read the control panel input register to determine the desired floor
number.

[lluminate the light behind the button on the control panel for the
elevator.

tc: Add the floor to the destination list for the elevator.

Maximum response time: 0.1 second.

: An elevator becomes overloaded.

R3a:

Disable the elevator so that it does not move until the overload
condition is gone.

Periodically (approximately every 5.0 seconds) check to see if the
overload is eliminated.

Maximum response time: 0.25 seconds.

Time to check elevator weight sensor (periodic).

If current weight is less than max load. then respond to commands.
Otherwise. delay another 5 seconds and check the weight sensor
again.

Maximum response time: 2.0 seconds.

A5 Anown Software Restrictions

The executable code must fit in 64K of memory. The amount of RAM available

tor data structures and the program stack is limited to 64K.

The elevator control system should always respond to the passenger pnshing
a button on the control panel (unless the elevator is overweight, or the emergency
stop button is pressed). This should preclude the software from trapping a passeneer
iuside the elevator. The elevator car itself (the hardware) is designed so that the

cievator car will only stop at a floor.

A6 Metarequirements

The following paragraphs identify domain expert imposed restrictions on 1he

design of the elevator control system:

The program should schedule the elevators efficiently and reasonably. [or
¢ialupie, 1f someone summons an elevator by pushing the down button on the {ourtl
floor. the next elevator that reaches the fourth floor traveling down should stop at
the fourth floor to accept the passenger(s). On the other hand. if an elevator has no
passengers (no outstanding destination requests). it should park at the last floor it
vizited nntil it is needed again. An elevator should not reverse its direction of travel
nutil its passengers who want to travel in its current direction have reached their

destinations.
The maximum weight load for an elevator is 4000 pounds.

An address for a memory mapped input or output register is hetween 0 and

2550 The upper byte is 16#004.

A floor number is implemented in eight bits. with a range in the current elevator

:‘)I]II")I \}'St(‘]ll ()(110

The elevator weight sensors measure the weight of an elevator in hundreds of

ponndss The weight value is implemented in eight bits, with a range of 0..235.

A-26

“

unterrupt

[Number7

Elevator 1 Control Panel

164014

Elevator 2 Control Panel

164#02#

Elevator 3 Control Panel

16H#03#

Elevator 4 Control Panel

164014

Elevator 1 Floor Sensor

16#05#

Elevator 2 Floor Sensor

16#06#

Elevator 3 Floor Sensor

16407 #

Elevator 4 Floor Sensor

164#03#

Up Summons Request Panel

16H#0A#

Down Summons Request Panel

640D #

Naote: The locations given above were not provided in the problem description. However, this information would L.

available to the analyst.

Table A.1. Elevator Control System Interrupt Numbers

The interrupt numbers used for the hardware signals are shown in table A.1.

Addresses of in;.ut and output registers are shown in table A.2. Table A.3 shows the

control word values for the elevator motor control commands

A.7 Erternal Interface Diagram

The external interface diagram for the elevator control system is shown in

fignre A.7.

rRegister TAddressJ
Elevator 1 Weight Sensor Register 16#31#
Elevator 2 Weight Sensor Register 164324
Elevator 3 Weight Sensor Register 16#33#
Elevator 4 Weight Sensor Register 16434#

Elevator 1 Control Panel Input Register 16#435#
Elevator 2 Control Panel Input Register 16#36#
Elevator 3 Control Panel Input Register 16#37#
Elevator 4 Control Panel Input Register 16438#
Elevator 1 Control Panel Output Register | 164#39#
Elevator 2 Control Panel Output Register | [6#3A#
Elevator 3 Control Panel Output Register | 16#3B#
Elevator 4 Control Panel Output Register | 16#3C#

Elevator 1 Floor Sensor Input Register 16#41#
Elevator 2 Floor Sensor Input Register 164424
Elevator 3 Floor Sensor Input Register 16#43#
Elevator 4 Floor Sensor Input Register 164#44#

Elevator 1 Location Panel Output Register | 16#45#
Elevator 2 Location Panel Output Register | 164464
Elevator 3 Location Panel Output Register | 164#47#
Elevator 4 Locution Panel Output Register | 16 448#

Up Summons Panel Input Register 16#4AH#
Down Summons Panel Input Register 16#4B#
Up Summons Panel Output Register 164#ACH#
Down Summons Panel Output Register 1644D#
Elevator 1 Motor Control Register 164514
Elevator 2 Motor Control Register 164524
Elevator 3 Motor Control Register 16#53#
Elevator 4 Motor Control Register 164544

oter The addresses given above were not provided in the problem description. However, this information woald e
avatlable to the analyst,

Table A.2. Elevator Control System Register Addresses

[Command [Value l

Up 167201 #
Down 16402#
Stop 16404 #

Table A.3. Elevator Motor Control Word Format

Read Request
Nrite Request

Signals

Write Request
Read Reques

Signals

Fignre A.22. Elevator Control Svstem External Interface Diagram

A-29

A8 High Level Actor Object Identification

The elevator control system is not complex enough to be decomposed into mul-
tiple actor objects controlling different problem areas. The elevator control system

15 documented as a class in the object encyclopedia.

A.9 Organized Preliminary Object List

Elevator Control System

Elevator

Elevator 1

Elevator 2

Elevator 3

Elevator 4
Direction

(Associated with each elevator.)
Floor Sensor

(Associated with each elevator.)
Elevator ID

(Associated with each elevator.)
Elevator Motor

(Associated with each elevator.)
Weight Sensor

(Associated with each elevator.)
Weight

Current Weight (Associated with each elevator.)
Load Capacity (Associated with each elevator.)

A-30

Control Panel
Elevator Control Panel (Associated with each elevator.)
UP Request Panel
DOWN Request Panel
Location Panel
(Associated with each elevator.)

List

Destination List (Associated with each elevator.)
Outstanding Request List '

Floor
Summons Request
Input Register
Elevator Control Panel Input Register (1 for each elevator)
UP Request Panel Input Register
DOWN Request Panel Input Register
Floor Sensor Input Register (1 for each elevator)
Output Register
Elevator Control Panel Output Register (1 for each elevator)
UP Request Panel Output Register
DOWN Request Panel Output Register
Location Panel Output Register (1 for each elevator)
Address
(Associated with each input or output register.)

Interrupt Number

(Associated with each control panel and floor sensor.)

Fventl:

Resp.la:

Rlb:

Rlc:

R1d:

R2c:

R2d:;

R3a:

A 10 Message Senders and Receivers

A passenger issues an “up” summons from a particular fioor (inter-

rupt).
Sender: UP Request Panel Receiver: Elevator Control System

Read the Up Summons input register to determine the floor number
of the request. (Performed by UP Request Panel)

[lluminate the light behind the button on the UP summons request
panel. (Performed by UP Request Panel)

If there is an idle (parked) elevator, send it to the floor where the
summons was issued. (Performed by Elevator Control System)

Add the request to the list of outstanding requests. (Performed by
Elevator Control System)

2: A passenger issues a “down” summons from a particular floor (in-

terrupt).
Sender: DOWN Request Panel
Receiver: Elevator Control System

a: Read the DOWN Summons input register to determine the floor

number of the request. (Performed by DOWN Request Panel)

: [lluminate the light behind the button on the DOWN summons

request panel. (Performed by DOWN Request Panel)

If there is an idle (parked) elevator, send it to the floor where the
summons was issiied. (Performed by Elevator Control System)

Add the request to the list of outstanding requests. (Performed by
Elevator Control System)

3. A sensor for an elevator signals its arrival at a particular floor (in-

terrpt).

Sender: Flevator Floor Sensor

Receiver: Elevator

Forwarded To: Elevator Control System

Read the floor number from the floor sensor inpnt register for that
elevator. (Performed by Floor Sensor)

R3b:

R3c:

R3a:

R3e:

E4:

R4a:

Rth:

Ric:

R3a:

f1oh:

B

).

Extinguish the light on the location panel for the elevator for the
previous floor. (Performed oy Elevator)

[lluminate the light on the location panel for the current floor. (Per-
formed by Elevator)

If the floor is listed in the destination list for the elevator. then stop
the elevator at the floor and extinguish the light behind the floor
number on the elevator’s control panel. After stopping, remove the
floor from the destination list, wait 3 seconds, then proceed to the
next destination. (Performed by Elevator)

If the floor and direction are listed in the outstanding request list.
then stop the elevator at the floor. Extinguish the light behind the
floor button on the proper request panel, and remove the summons
request from the cutstanding request list. After stopping, wait 3
seconds, then proceed to the next destination. (Performed by Ele-
vator Control System)

A passenger presses a destination button on the control panel of a
particular elevator (interrupt).

Sender: Elevator Control Panel

Recciver: Elevator

Read the control panel input register to determine the desired floor
number. (Performed by Control Panel)

[luminate the light behind the button on the control panel for the
elevator. (Performed by Control Panel)

Add the floor to the destination list for the elevator. (Performed by
Elevator)

. An elevator becomes overloaded.

[nquiry Sender: Elevator
Inquiry Receiver: Weight Sensor

Disable the elevator so that it does 1ot move nntil the overload

condition is gone. (Performed by Elevator)

Periodically (approximately every 5.0 seconds) check to see if the
overload is eliminated. (Performed by Elevator)

I'ime to check elevator weight sensor (periodic).

A-33

e

R6: If current weight is less than max load, then respond to commands.
Otherwise, delay another 5 seconds and clieck the weight sensor
again. (Performed by Elevator)

A 11 Documentation of Object Classes

The remaining pages of this appendix document the object classes as entries

in the Object Encyclopedia.

A3

Elevator Control System

Textual Description:

-

The Elevator Control System is the main object of the system. It couiain-
~oftware models of the UP and DOWN request panels, and each of the four elevators.
This 1s a high level actor object which keeps track of and schedules each of 1he

clevators,

The elevator control system keeps track of the outstanding summons reques -
and schedules elevators to meet these requests. The elevator control svstem shonld
~chedule the elevators efficiently and reasonably. For example. if someone summons
an elevator by pushing he down button on the fourth floor. the next elevator tha
reaches the fourth floor traveling down should stop at the fourth floor to accepr thie
pussengers. When the elevator control system receives a summons request. it should
rst determine if there is a parked elevator to send to answer the summons. If not.
when an elevator reaches its final destination and the request 1s still outstandine.

the free elevator should be sent to the floor to answer the sinmmons.
Structure Diagram, Interface Diagram, and State Transition Diagram:
See fignres AL A2t and AL25.

Messages received by class:

Arrived at Floor A signal that an elevator has arrived at a
floor.
P Sunons Request A signal then an UP summons request as

been issied.

Plown Simmons Reguest A signal than a DOWN <ammons reqnest
| g |

has been issued,

Messages sent by class:

Summons Request.Create

Control Panel.Extinguish Light

List.Is Empty

List.Add [tem

List.Remove [tem

Tist.Is In List

“loor. Assignment

I'loor.Is less than

Ilevator.Final Destination Of

Llevator.Direction Of

Flevator. Floor Number Of

Flevator.Set Direction

Flevator.Stop at this Floor

Flevator Go To Floor

Create a summons request from the floor
number and direction .

Signal the UP or DOWN request pancl tu
extinguish one of its lights due to an ele-
vator arrival.

Test if the list is empty.

Add a summons request to the list.

Remove a summons request from the list.

Checks to see if a given summons request
is in the list.

Assign one value of a floor number to an-
other.

Test if one floor number is less than the
other.

Yeturns the final destination of the eleva-
tor.

Returns the direction of the elevator.

Returns the eurrent floor where the elevi-

tor is.
Set the direction of an idle elevator.

Signal to the elevator to stop at the cnrrent
floor.

Signal to the elevator to go the the civen

”()()F.

A36

Elevator ID.Assignment Assign one value of an Elevator ID to an-
other.

Elevator ID.Is equal Test if two elevator IDs are equal.

Description of any state limitations:

If an outstanding request is still pending after 20 seconcs, poll the elevators 1o

see if any is free to respond to the summons.
List of exported exceptions:
None. The Elevator Control Svstemn must handle all errors internally.
List of exported constants:
None.
Re-use considerations:

This class is application specific.

AT

Elevator 1

is an has part

Elevator \has part

Control

Elevator

Figure A.23. Elevator

Control System: Structure 7

RN

Tram

Arrived At Floor
Up Summons Request
Down Summons Request

Elevator

create Control

assignment

Summons

Request js equal

extinguish
light

Control
Panel

DOWN Request Pane
UP Request Panel

set direction

go to floor
direction of
floor number of

is empty
add item

remove item his f
.. . n at t
is in list Lssi nment stop at LS oo
signment \ final destination of

s less than
s equal

Outstanding

Request List Ilevators 1-1

Floor

Iigure A.24. Elevator Control System: Interface Diagram

AL3H

Request

List Arrived at floor

SumRmonb t Up summons request
eques Down summons request
Satisfied

Outstandin
I}equgst &

Summons request satisfied
Up summons request
Down summons request
Arrived at floor

Figure A.25. Elevator Control System: State Transition Diagram

A-40

Elevator

Textual Description: An elevator object controls the movement of a single cl-
evator. This class of objects, each of which has a unique Elevator 1D, contains
controllers for each logical component of the elevator: motor, control panel, location
panel. weight sensor, and floor sensor. The elevator has a direction associated witl
it. aind maintains a list of destinations entered on its control panel. This controller
will move the elevator to each floor in its destination list, and respond to requests
relayed through the elevator control system. The controller handles the setting of
lights on the location panel based on input from the floor sensors. An elevator with
no outstanding destination requests should park at the last floor it visited. An eleva-
tor should not reverse its direction of travel until it has reached its final destination

m its current direction.

Structure Diagram, Interface Diagram, and State Transition Diagram:
See figures A.26, A.27, and A.28.

Messages received by class:

Go To Floor Stop the elevator at the given floor.
Stop At This Floor Stop the elevator at the current floor.

Set Direction Sets the direction of the elevator. {The
eievator direction must first be “Parked™.)

IFloor Number Of Returns the current location (floor num-
ber) where the elevator is.

Direction Of

Final Destination Of

Button Pushed

Arrival At Floor

Returns the current direction of the eleva-
tor.

Returns the floor number of the elevators
final destination in its destination list.

This is a signal that a given button has
been pushed on the control panel, indicat-
ing a new destination.

This is a signal from the elevator floor sen-
sor that the elevator is about to arrive at

Messages sent by class:

Elevator Motor.Up

Elevator Motor.Down

Elevator Motor.Up

Control Panel.Extinguish Light

Flevator ID.Assignment

Location Panel.llluminate Light

Location Panel.Extinguish Light

a given floor.

Signal the motor to move the elevator up.

Signal the motor to move the elcvator
Down.

Signal the motor to stop the elevator.

Signal the elevator control panel to extin-
guish the light for the current floor.

Assign one Elevator ID to another.

Signal the elevator location pancl to 1lhn-
minate the light of the floor at which thie
elevator is about to arrive.

Signal the elevator location panel to extin-
guish the light of the floor the elevator is
leaving.

A-12

Elevator Control System.Arrived At Floor Signal to the elevator control six-
tem the elevator has just arrived at

a floor.

Weight Sensor.Check Weight Check the current weight ol the cl-
evator.

Weight . Assignment Assign the weight sensor valie 1o

the current weight attributc.

Weight.Is Less Than Determine if the current weighit is
less than the elevator’s load capic-
ity.

Direction.Assignment Set the value of the elevator's direc-

tion attribute.

Direction.Is Equal To Test the current vaue of the di-
rection attribute to see if it s
“Parked”.

List.Is Empty Check if the destination list s
empty.

List.Is In List Check if a floor number is in the

destination list.

List.Remove [tem Remove a floor from the destination
list when vou arrive at that floor.

List. Add [tem Add a floor to the destination list.

Description of any state limitations:

If the elevator is overweight, the elevator controller will periodically (every five
~ceonds) check the weight sensor to see if the load has been reduced. The elevarar
will not leave the “overweight™ state until the sensor reports that the value of curvent

weight s less than the load capacity.

A-13

List of exported exceptions:

Elevator Busy

Elevator Overweight

An attempt was made to set the direc-
tion of an elevator whose direction was not

“Parked”.

An attempt was made to direct the eleva-
tor to another floor when the elevator is
overweight.

List of exported constants:

None.

List of objects in class:

Elevator 1

Elevator 2

o [levator 3

Flevator 4

Re-use considerations:

This class 1s application specific.

Elevator
Motor

has attribute

Destination
List

has attribute

Elevator

as attribute

has part,
1as attribute

Location
Panel

has part

|
has part

Fignre A.26. Elevator: Structure Diagram

RERN)

Elevator
Motor

Extinguish Light

Control
Panel

Assignment

[lluminate Light
I'xtinguish Light

Location
Panel

T

Go To Floor
Set Direction

Stop At TlLis Floor
Floor Numbher Of
Direction Of

Final Destination Of
Button Pushed
Arrival At Floor

v

: is Empty
el Is In List

Elevato Remove Item
Add Tte
List
Destination
List

Is Equal To

Assignment

Assignment
[s Less Than

Weight

v, ced At Floor l'_ Load Capaciiy

Elevator
C'ontrol

= Current Weight
Check Weight

\ste

Figure A.27. Elevator: Interface Diagram

A-16

BN R N EE e

Arrival At
Final Dest.

[dle

Arrival At

go to ﬁ00§ Final Dest.
add destination

go to floor
add destination

Going
Up

Going

, Down
current weight not

l.t. load cap.

urrent weight not

.t. load cap.

current. weight 1.t.
load capacity

current weight 1.t.
load capacity

Figure A.28. Flevator: State Transition Diagram

Control Panel

Textual Description:

An object of the control panel class drives a hardware control panel. It hancles
tire interrupts raised by pressing buttons on the panel, determines which button is
pressed. and automatically lights the lamps behind the buttons. The control panc! ix
contained within a parent object, and sends a mc.sage to this object when a bitton
1s pushed. The control panel uses input and output registers to communicate with

the hardware.

Structure Diagram, Interface Diagram, and State Transition Diagram:
See figures A.29, A.30, and A.31.

Messages received by class:

Extinguish Light Extinguish a light behind a button on the
control panel.

Button Pushed This is a signal (interrupt) from the hard-
ware that a button on the control pancl
has been pushed and the button number is
in the input register.

Messages sent by class:

[nterrnpt Namber. Assignment Assign a valie of one object to another
when initializing the control panel.

Address. Assignment Assign a value of one address object (for
the inpuf and output N‘gist#‘!’\‘) to anaother

when mitializine the control panel.

Button Pashed A message to the receiver that a contid

prnel button has heen pushied.

S BN By =N BN I B O e e

Input Register.Read Read the floor number from the input reg-
1ster.

Output Register.Write Write the floor number to the output reg-
ister.

Floor. Assignment Assign the value of one object to another
floor object.

Description of any state limitations:

When the control panel writes a floor number to the ontput register. that lizh
is toggled. Therefore, the message Ertinguish Light could actually illuminate the
light. The control panel driver assumes that the light specified in this messagce is
actually on. This is a safe assumption in this system since the elevator or elevator
control system will maintain a list (destination list and outstanding response list} of

those control panel buttons that are pressed.
List of exported exceptions:

None,
List of exported constants:

None.

List of objects in class:

e Flevator 1 Control Panel

Elevator 2 Control Panel

Elevator 3 Control Panel

Elevator 1 Control Panel

U'P Request Panel
DOWN Request Pancl

A-19

Re-use considerations:

This class has re-use potential. [f re-used, take note of the discussion under

the State Limitations section.

Input
has Register

attnibute

has attribute

Output
Regli]s fer

Address

Figure A.29. Control Panel: Structure Diagram

A0

extinguish light
button pushed (interrupt)

Control
Panel

assignment

read
assignment \

Button Pushed

[t
Addres: npt

egister

Input Register Address Y

Output Register Address

Figure A.30. Control Panel: Interface Diagram

Initialized

Extinguish

Light Button Pushed

A
Light

lluminated

Figure A.31. Control Panel: State Transition Diagram

A5l

_

Address

Textual Description:

An address specifies the memory location of an input or output registor. The

address is implemented in eight bits.

Structure Diagram, Interface Diagram, and State Transition Diagram:
See figurec A.32, A22, and A 04

Messages received by class:

Assignment Assign the value of one address ohject to
another.

Messages sent by class:
None.
Description of any state limitations:

An object of type address must have a value in the range 0..256. An address

object must be initialize before it can be read.
List of exported exceptions:

Constraint Error The value assi + ! to the object is not in
the proper rany

List of exported constants:
Max Address — 256
Re-use considerations:

This class is potentially re-usable.

has max

Address

has attribute

has minimum

1s an

ln;ger\

8 bits

Figure A.32. Address: Structure Diagram

Assignment

Figure A.33. Address: Interface Diagram

Uninit-
ialized

assigniment

Initialized

Figure A.34. \ddress: State Transition Diagram

A-53

N BN N B B D B I B e

Direction

Textual Description:

The direction class specifies the direction of an elevator. The values of

object of this class are “UP”, “DOWN?", or “Parked”.

Structure Diagram, Interface Diagram, and State Transition Diagram:
See figures A.35, A.36, and A.37.

Messages received by class:

Assignment Assign the value of one direction object to
another.

[s Equal To Test to see if two direction objects have the
s. me value.

Messages sent by class:
None.
Description of any state limitations:

The values of an object of this class are “UP™, “DOWNT", or “Parked”.

object of this class may not be read until it has been assigned a value.
List of exported exceptions:

Constraint Error The value assigned to an object of this class

is not “UP", “DOWNT, or "Parked”.

all

An

i“E I 7 BN BN B S B EE s

List of exported constants:

The following values are visible: “UP", “DOWN?™, or “Parked”.

Re-use considerations:

This class is application specific.

Up

Direction
has
Value
can be can be

can be

Figure A.35. Direction: Structure Diagram

assignment
is equal to

Figure A.36. Direction: Interface Diagram

Y

-l

assignment

Figure A.37. Direction: State Transition Diagram

A-56

Elevator ID

Textual Description:
An elevator ID 1s simply an integer identifier nused to identify an elevator object.
Structure Diagram, Interface Diagram, and State Transition Diagram:
See figures A.38, A.39, and A.40.
Messages received by class:

Assignment Assign the value of one Elevator 1) object
to another.

[s equal Test if two Elevator [Ds are equal.
Messages sent by class:
None.
Description of any state limitations:

The value of an object of this class is limited to the range 1..4. An object of
this class may not be read until in has been assigned a value.

List of exported exceptions:

Constraint Error The value assigned to an object of this class
is not in the range 1..4.

List of exported constants:
Norne.
Re-use consideralions:

This class i1s application specific.

has maximum

has mintmum

Flevator [D

s an

Figure A.38. Elevator [D: Structure Diagram

assignment
is equal

Figure A.39. Elevator ID: Interface Diagram

assignment

Fignre A A0, Elevator 1D State Transition Diagram

AR

B2 BN I SR 0 B B B s e

Elevator Motor

Textua' Tescription:

This class of objects controls the motor of an elevator. It responds to conuniard-
sent as messages by loading the proper control word into the physical ontput poss
that controls the elevator motor. The commands are: Up — 16#01#. Down
6024, Stop - 16#041#.

Structure Diagram, Interface Diagram, and State Transition Diagram:

See figures A4l A42, and A3,

Messages received by class:

p Set the motor to raise the elevator.
Down Set the motor to lower the elevator.

Stop Set the motor to stop the elevator.

Messages sent by class:

Onrpnt Register. Write Write a control word to the ontput register.

Neldress. Assignment Assign one address object’s value to an-
other.

Description of any state [imitations:
.\:HH".
L.ist of exported exceptions:

A\’HH('A

List of exported constants:
None.

List of ~"jects in class:

o [levator 1 Motor
e [levator 2 Motor
e Elevator 3 Motor

e Elevator 1 Motor

Re-use considerations:

This class is application specific.

Elevator
Motor

has part

Address

Figure A1l Elevator Motor: Structure Diagram

A6

Elevator

Motor Assignment

Address

Output
Register

Figure A.12. Elevator Motor: Inierface Diagram

stop

down

Heading

Down dowt

nup

Figure A.43. Flevator Motor: State Transition Diagram

A6l

Floor

Textual Description:

This class of objects defines the floor numbers that an elevator can stop at.
The tloor number is implemented in eight bits so that it can fit in the input and

output registers.

Structure Diagram, Interface Diagram, and State Transition Diagram:

See figures A.44, A.45, and A .46.
Messages received by class:

Assignment Assign the value of one floor object to an-
other.

Is Equal Test to see if two floor objects have the
same value.

[s Less Than Test to see if one floor value is less than
the other.

Messages sent by class:
None.

Description of any state limitations:

The value of an object of this class must be in the range 1..10.

this class may not be read until it has been assigned a valne.
List of exported exceptions:

Constraint Error The value assigned to an object of this class
is not in the range 1..40.

List of exported constants:
Top Floor — 40
Re-use considerations:

This ~las: is application specific.

A-62

An object o)

has attribute

Size

% bits

has maximum

has minimum

Integer

Figure A.44. Floor Number: Structure Diagram

[s less than
Is equal
Assignment

Figure A.15. Floor Number: Interface Diagram

A-63

Uninit-
1alized

assignment

Initialized

Figure A.46. Floor Number: State Transition Diagram

A-64

Floor Sensor

Textual Description:

This class of objects manages the elevator floor sensors. When the physical
floor sensor triggers an interrupt and writes the floor number in an input register.
this floor sensor manager reads the register and sends a message to some recciver.

[n this system, the receiver is always an elevator.

Structure Diagram, Interface Diagram, and State Transition Diagrai.i:
See figures A.47, A.48, and A.49.

Messages received by class:

Arrival At Floor This is a signal (interrupt) from the hard-
ware that the elevator is approaching the
floor whose number is in the input register.

Messages sent by class:

Address. Assignment Assign the value of the input register ad-
dress into it’s object at initialization.

Input Register.Read Read the floor number from the floor sen-
sor input register.

Arrival At Floor A message to the receiver that an elevator
has reached a floor.

Floor. Assignment Assign the value of one floor object to an-
other.

Interrnpt Number.Assignment Assign the value of the floor sensor inter-
rupt into its attribute at initialization.

A-65

Description of any state limitations:

None.

List of exported exceptions:
None.

List of exported constants:
None.

bf List of objects in class:

e Elevator 1 Floor Sensor
e Elevator 2 Floor Sensor
e Elevator 3 Floor Sensor

e Elevator 4 Floor Sensor

Re-use considerations:

This class has limited re-use potential.

has attribute

has attribute

has attribute

Input
egister
dress

Figure A.47. Floor Sensor: Structure Diagram

A-66

.

Arrival At Floor (interrupt)

Sensor Assignment

!

Arrival At Floor

Figure A.48. Floor Sensor: Interface Diagram

assignment

Initialized

Figure A.19. Floor Sensor: State Transition Diagram

A-GT

Input Register

Textual Description:

An input tcgister is a hardware entity, but in many ways acts like a software
entit- In this system, the input register will contain a bit pattern (eight bits) which
can - interpreted as values of class floor or weight as appropriate when read by
other)bjects.

Struture Diagram, Interface Diagram, and State Transition Diagra:

see figures A.39, and A.51. A state transition diagram is not appropriate for
this .ass.

Messages received by class:
Read Read the value in the input register.

Alessages sent by class:

None.
Descripticn of any state limitations:

None.
List of exported exceptions:

N/A
List of exported constants:

N/A

List of objects in class:

¢ Llevator 1 Weight Sensor Register

¢ Llevator 2 Weight Sensor Register

e Elevator 3 Weight Sensor Register

o Elevator 4 Weight Sensor Register

o Llevator 1 Control Panel Input Register
e Elevator 2 Control Panel Input Register
¢ [levator 3 Control Panel Input Register
¢ PIlevator 4 Control Panel Input Register
¢ Elevator 1 Floor Sensor Input Register
* Elevator 2 Floor Sensor Input Register

¢ Elevator 3 Floor Sensor Input Register

A-68

o Elevator 4 Floor Sensor Input Register
¢ UP Summons Panel Input Register

e DOWN Summons Panel Input Register

Re-use considerations:

This 1s a description of a hardware entity and thus has no software 1«
potential.

jmplemented in

has

Bits

Figure A.50. Input Register: Structure Diagram

Figure A.51. Input Register: Interface Diagram

A-6Y

-Use

Interrupt Number

Textual Description:

This class defines the interrupt numbers. Valid interrupt numbers are those
which can be represented in eight bits.

Structure Diagram, Interface Diagram, and State Transition Diagram:
See figures A.52, A.53, and A.34.
Messages received by class:

Assignment Assign a value to an Interrupt Number ob-
ject.

Messages sent by class:
None.
Description of any state limitations:

The value of an object of this class must be in the range 0..255. An object of
this class may not be read until it has been assigned a value.

List of exported exceptions:

Constraint Error The value assigned to an object of this class
1s not in the range 0..256.

List of exported constants:
None.

List of objects in class:

e Elevator 1 Control Panel Interrupt
e Elevator 2 Control Panel Interrupt
o Elevator 3 Control Panel Interrupt
¢ Elevator 4 Control Panel Interrupt
e Elevator 1 Floor Sensor Interrupt
e Elevator 2 Floor Sensor Interrupt

e [levator 3 Floor Sensor Interrupt

A-T0

e

e Elevator 4 Floor Sensor Interrupt

¢ UP Summons Request Panel Interrupt

e DOWN Summons Request Panel Interrupt

Re-use considerations:

This class has limited re-use potential.

Interrupt
Number

has attrilute

has minimum

3 bits

Integer

T R I A T I E N & e

Figure A.52. Interrupt Number: Structure Diagram

Assignment

Figure A.53. Interrupt Number: Interface Diagram

A-T1

Uninit-
1alized

assignment

Initialized

Figure A.54. Interrupt Number: State Transition Diagram

List

Textual Description:

The list class models a bounded list of items. [tems can be added. or removed

from the list. as well as tested for inclusion in the list.
Structure Diagram, Interface Diagram, and State Transition Diagram:
See figures A.55, A.56, and A.5T.

Messages received by class:

Is Empty Test to seeif the list 1s empty of items.
s In List Test to see if a given item is in the list.
Add Ttem Add an item to the list.

Remove Item Remove an item from the list.

Messages sent by class:

[s Fgnal Test if two items are equai {required from
class of item).

Assignment Assign the value of one item to another

(required from class of item).

Description of any state limitations:

No item can be removed from an empty list, nor added to a full hst

List of exported exceptions:

Overflow Attempt was made to add to a full list.

Underflow Attempt was made to remove from an
empty list.

List of exported constants:
Size — The size of the list.
Re-use considerations:

This class is potentially re-usable.

has attribute
contains

Figure \.55. List: Structure Diagram

1s empty
is in list
add item
remove item

is equal
assignment

Figure A.56. List: Interface Diagram

Remove Ttem (Frror)

Remove item)
Add item

Add item
Remove iiem

Remove item Add item

Add item (Error)

Figure A.57. List: State Transition [hagram

A-TS

Location Panel

Textual Description:

This class controls the operation of the location panel hardware of an elevator,
The class responds to messages to illuminate and extinguish lights in the panel. It
does so by outputing the floor number of the light to the location panel output
register. The class maintains a list of previously illuminated lamps (of which there
should be only one). The location panel will only extinguish lights which were

previously illuminated.
Structure Diagram, Interface Diagram, and State Transition Diagram:

See figures A.58, A.59, and A.60. The state transition diagram describes the

activity of a single light on the panel.
Messages received by class:

[lluminate Light Illuminate a new light on the [ocation
panel.

Extinguish Light Extinguish a light on the location panel.

Messages sent by class:

Floor. Assignment Assign a floor number value to the floor
number attribute.

Address. Assignment Assign the output register address to the
attribute at initialization.

Output Register.Write Write the floor number to the location
panel output register to toggle the light.

AT6

List.Remove Item Remove a floor number from the list of il-
luminated lights.

List.Add Item Add a floor number to the list of illumi-
nated lights.

List.Is In List Test to see if a floor number is in the list
of illuminated lights.

Description of any state limitations:

The location panel controller will check its status list before sending writing
to the output port to toggle the light. Therefore, it will preclude the possibility of

toggling the light off when it should be illuminating it, and vice versa.
List of exported exceptions:

None.
List of exported constants:

None.

List of objects in class:

Elevator | Location Panel

e Flevator 2 Location Panel

Ilevator 3 Location Panel

I.levator 4 Location Panel

Re-use considerations:

This class has limited re-use potential.

Location

Panel contains

has attribute
Status
List

has attribute

RO u_tptut
Address

Is a

List

Figure A.58. Location Panel: Structure Diagram

[lluminate Light
Extingnish Light

Location
Panel

remove item
add item
1s 1n list

assigniment

Fignre A.59. Location Panel: Interface Diagram

A-TN

extinguish

illuminate .
/toggle light

/toggle light

illuminate

Figure A.60. Location Panel: State Transition Diagram

A-T9

Output Register

Textual Description:

An output register is a hardware entity, but in many ways can be thought of
as a software entity. In this system, the output register will be written a bit pattcrn

(cight bits) which is interpreted by other hardware devices to be a floor number.
Structure Diagram, Interface Diagram, and State Transition Diagram:

See figures A.61 and ref5orid. A state transition diaeram is not appropriate

for this class.
Messages 1 .ceived by class:

Write Write the value into the output register.

Messages sent by class:
None.
Description of any state limitations:
None.
List of exported exceptions:
N/A
List of exported constants:
N/A

List of objects in class:

Fllevator 1 Location Panel OQutput Register

Flevator 2 Location Panel Output Register

Illevator 3 Location Panel Output Register

Flevator 4 Location Panel Output Register

levator 1 Control Panel Output Register

Flevator 2 Control Panel Qutput Register

Flevator 3 Control Panel Output Register

A-R0

e Elevator 4 Control Panel Output Register
o Elevator 1 Motor Control Register

e Elevator 2 Motor Control Register

o Elevator 3 Motor Control Register

o Elevator 4 Motor Control Register

e Up Summons Panel Output Register

¢ DOWN Summons Panel Output Register

Re-use considerations:

This is a description of a hardware entity and thus has no software re-use
potential.

plemented in

has

Bits

Figure A.61. Output Register: Structure Diagram

Write

Output
Register

Figure A.62. Output Register: Interface Diagram

A-81

—

A S N Oh N AN BN B s I U R EBE OE B e e

Summons Request

Textual Description:

The summons request class describes a structure which contains the important
information about a summons request: its floor and direction. An object of this type
is useful for placing in a list of requests for further processing.

Structure Diagram, Interface Diagram, and State Transition Diagram:
See figures A.63, A.64, and A.65.
Messages received by class:

Create Create a summons request value from a
floor number and direction.

Is Equal Test the values of two summons request
objects to see if they are equal.

Assignment Assign a summons request value to another
object.

Messages sent by class:

Floor. Assignment Assigu i floor number to the summons
request component when creating a sum-
mons request.

Floor.Is Equal Test to see if the floor number components
of two summons requests are equal.

Direction.Assignment Assign the direction to the summons re-
quest component when creating a sum-
mons request.

Direction.Is Equal Test to see if the direction components of
two summons requests are equal.

Description of any state limitations:

The floor number and direction components must each have legal values for
thos » respective classes. An object of this class mayv not be read until it has heen
created via the create message.

A-R2

List of exported exceptions:

Constraint Error The value of the floor number or direction
assigned to an object of this class is not in
the proper range for its class.

List of exported constants:
None.
Re-use considerations:

This class is application specific.

Summons
Request

Figure A.63. Summons Request: Structure Diagram

A-%3

create
is equal
assignment

Summons
Request

assignment
is equal

assignment
is equal

Figure A.64. Summons Request: Interface Diagram

Uninit-

ializeFd/
create
assignment

Initialized create
assignment

Figire A.65. Summons Request: State Transition Diagram

A-84

I S B o D T N BN TS B B O G A BE T B A e

Weight

Textuai pDescriplion:

This class of objects defines the weight of an entity, in this case

elevators. The

units for this class are in hundreds of pounds. The type must be implemented in

eight bits, since its value is taken from an input register.

Structure Diagram, Interface Diagram, and State Transition Diagram:

See figures A.66, and A.67. A state transition diagram is not required for this

class.
Messages received by class:

Assignment Assign a weight value to an object.

[s Less Than Test to see if one value of weight is less than
another.

Messages sent by class:
None.
Description of any state limitations:
The value of an object of this class must be in the range 0..255
this class may not be read until it has been assigned a value.
List of exported exceptions:

Constraint Error The value assigned to an object of this class
is not in the range 0..255.

List of exported constants:
Max Weight — 255
Re-use considerations:

This class is application specific.

. An object ol

Weight

1s an .
has minimum

has
maximum

Integer

Figure A.66. Weight: Structure Diagram

assignment

1s lees than

Figure A.67. Weight: Interface Diagram

ARG

& Il e

Weight Sensor

Textual Description:

This class of objects manages the weight sensor for an elevator. The physical
weight sensor periodically places a weight value in an input register. When a weigln
check is requested, a weight sensor object will read the weight sensor input register

and return the weight value.

Structure Diagram, Interface Diagram, and State Transition Diagram:
See figures A.68, A.69, and A.70.

Messages received by class:

Check Weight Read the weight sensor input register and
return the weight value.

Messages sent by class:

Weight.Assignment Assign the weight value from the input reg-
ister to the current weight attribute.

Input Register Read Read the weight value from the weight sen-
sor input register.

Address. Assignment Assign the address of the input register to
its attribute at imtialization.

Description of any state limitations:
None.

List of exported exceptions:
None.

List of exported constants:

None.

A-RT

List of objects in class:

Elevator 1 Weight Sensor
o [levator 2 Weight Sensor
e Elevator 3 Weight Sensor
e Elevator 4 Weight Sensor

Re-use considerations:

This class has limited re-use potential.

Weight
Sensor

has attribute

has attribute

Output
Register
Ad

ress

Current
Weight

Figure A.68. Weight Sensor: Structure Diagram

check weight

Weight
Sensor

assignment assignment

Weight

Figure A.69. Weight Sensor: Interface Diagram

initialize

S

Figure A.70. Weight Sensor: State Transition Diagram

A-R9

S = .

Bibliography

Abbott, Russel J. *“Program Design by Informal English Descriptions™." Commu-
nications of the ACM, 26(11):882-891 (November 1983).

Bornes, Patrick D. A Decision-Based Methodology for Object Oriented Design.
MS thesis, AFIT/GCS/ENG/838D-1. Air Force Institute of Technology. 19sx
(ADA202579).

Booch. Grady. Software Engineering with Ada. The Benjamin/Cummings Publish-
ing Company. Inc., 1983.

Booch. Grady. *Object Oriented Development,” IFEFE Transactions on Softwar
Engineering. SE-12(2):211-221 {February 1986).

Booch. Grady. Software Components with Ada. The Benjamin/Cummings Publish-
ing Company, Inc., 1987.

Booch. Grady. Software Engineering with Ada (2nd FEdition). The Ben-
jamin/Cummings Publishing Company, Inc., 1987.

Bralick Jr.. William A. An Eramination of the Theorectical Foundations of the Object-
Oriented Paradigm. MS thesis, AFIT/GCS/MA/88N-01. Air Force Institute
of Technology, 1988 (ADA194879).

Chen, Peter P. “*The Entity-Relationship Model-Toward a Unified View of Data™."
ACM Transactions on Database Systems, [(1):9-36 (March 1976).
Coad Jr., Peter. “Object Oriented Requirements Analysis (OORA)." In Procerd-

ings of the Twelfth Annual International Computer Software and Applications
Conference, page 436, 1988.

DeMarco. Tom. Structured Analysis and System Specification. Englewood Cliffs.
NJ: Prentice-Hall. Inc.. 1979.

Department of Defense. Reference Manual for the Ada Programming Language.
ANSI/MIL-STD-18154, 1983.

EVB Software Engineering Inc. An Object Oriented Design Handbook for Ada Soji-
ware. Frederick, MD., 1985,

FA'B Software Engineering Inc. Object Oriented Requirements Analysis. Frederick,
MD. 1989,

Ciane. Chris and Trish Sarson. Structured Systems Analysis: Tools and Technigues,
St. Louis: McDonnell Douglas, 1932,

Comaa. Hassan and Douglas B. I1. Scott. “Prototvping as a Tool in the Specification
of User Requirements.” In Procecdings of the [EEE Fifth Annual Infernational
Conference on System Engineering, pages 333 3120 1981,

[ehbiah. Jean D.. et al. Rationale for the Design of the Ada Programming Language.
19%6.

BIB-1

s

ANSI/IEEE Standard 729-1983. IEEE Standard Glossary of Software Enginecring
Terminology.

Jorgensen, Paul C. “Tutorial On Requirements Specification.” In Proceedings of the
IEEE Computer Society's Tenth Annual International Computer Software and
Applications Conference, page 182, 1986.

Kenth, Norman L., et al. “Summary of Discussions from OOPSLA-87"s Methodolo-
gies and OOP Workshop.” In Addendum to the Proceedings OOPSLA "87. AC)]
SIGPLAN Notices, 1987.

[adden. Richard M. “A Survey of [ssues to be Considered in the Development of
an Object-Oriented Development Methodology for Ada,” ACM Ada Lettrrs.
9(2):78-89 (March/April 1989).

Land, F.F. and M. Kennedy-McGregor. “Information and Information Systeins:
Concepts and Perspectives.” In Galliers, Robert. editor. Information Analysis:
Selected Readings, pages 63-91, Addison-Wesley Publishers Ltd., 1987.

Land, Frank. “Adapting to Changing User Requirements.” In Galliers, Robert. ed-
itor, Information Analysis: Selected Readings, pages 203-229, Addison-Wesley
Publishers Ltd., 1987.

Maclennan, Bruce J. Principles of Programming Languages: Design. Evalualion.
and Implementation. New York: CBS College Publishing, 1983.

Martin, James and Carma McClure. Structured Techniques for Computing. Prentice-
Hall, Inc., 1985.

McFarren, Michael R. Using Concept Mapping to Define Proplems and [den-
tify WNey Nernels During the Development of a Decision Support System.
MS thesis, AFIT/GST/ENS/87M-12, Air Force Institute of Technology. 1987
(ADA1835636).

McMenamin, Stephen M. and John F. Palmer. FEssential Systems Analysis. New
York: Yourdon Inc.. 1984,

Mittermeir. Roland T.. et al. “Alternatives to Overcome the Communication Prob-
lems of Formal Requirements Analysis.” In Galliers. Robert. editor. Information
Analysis: Selected Readings, pages 153-165, Addison-Wesley Publishers Ltd..
1087,

Novak, Joseph D.and D. Bob Gowin. Learning How to Learn. Cambridge University
Press. 1981,

Page-Jones. Meiliv. Practical Project Management: Restoring Quality to DP Projocts
and Systems. New York: Dorset [House Publishing, 1985,

Parnas. David L. ~On the Criteria To Be Used in Decomposing Systems into Mod-
mles.” Communications of the ACM, 15(12):1053-1058 (December 1972).

BIB-2

S

Pascoe, Geoffrey A. “Elements of Object-Oriented Programming,” Byte. [1(8):139-
141 (August 1986).

Peters, Lawrence. Advanced Structured Analysis and Design. Englewood Cliffs. N.I:
Prentice-Hall, 198T7.

Pressman. Roger S. Software Engineering: A Practitioner’s Approach (2nd Edition).

McGraw-Hill, Inc., 1987.

Ross, Douglas T. and Kenneth E. Schoman. Jr. “Structured Analysis for Require-
ments Definition,” IEEFE Transactions on Software Fngineering. SF-3(1):6-15
(January 1977).

Seidewitz, Ed and Mike Stark. General Object-Oriented Software Development.
Technical Report SEL-86-002, NASA Goddard Space Flignt Center, VA 1936,

Seidewitz, Ed and Mike Stark. “Towards a General Object-Oriented Software Devel-
opment Methodology,” ACM SIGAda Ada Letters, 7(4):4.54-4.67 (July-August
1987).

Shlaer, Sally and Stephen J. Mellor. “Three Approaches to System Analysis,” Com-
puter Design, 27(1):55 (January 1988).

Sprague, Ralph and Eric D. Carlson. Building Effective Decision Support Systems.
Englewood Cliffs, NJ: Prentice Hall Inc., 1982.

Umphress. David A., “Object Oriented Requirements Analysis.” 1988. Class notes
for MATH 553, Introduction to Software Engineering with Ada. at the Air Force
Institute of Technology (AFIT).

Valusek, John R. and Dennis G. Fryback. “Information Requirements Determina-
tion: Obstacles Within, Among and Between Participants.” In Galliers, Robert.
editor, [nformation Analysis: Selected Readings. pages 139-151. Addison-
Wesley Publishers Ltd., 1987.

Ward. Paul T. “How to Integrate Object Orientation with Structured Analysis and
Design.” IEEE Software, pages 74-82 (March 1989).

Yadav, Surya B.. et al. “Comparison of Analysis Techniques for Information Re-
quirements Determination,” Communications of the ACM. 31(9):1090 -1097
(September 1988).

Yourdon, Edward. Modern Structured Analysis. Prentice-Hall. Inc.. 1989.

BIB-3

Vita

Capt Steven G. e Y

B aduating
as valedictorian in 1981. Capt March entered the United States Air Force Academy
that year, where he majored in Computer Science. In May of 1985, Capt March was
awarded a Bachelor of Science degree as a distinguished graduate', and commissioned

as an Air Force officer.

Capt March was then assigned to the 3390 Technical Training Group (Keesler

AFB, MS) where he served for three years as an Ada Software Engineering Instructor.

Capt March entered the Air Force Institute of Technology, School of Engineering, in
May of 1988.

VITA-1

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE
Form Approved
[REPORT DOCUMENTATION PAGE OMB No. 0704-0188
3. REPORT SECURITY CLASSIFICATION 1b. RESTRICTIVE MARKINGS
UNCLASSIFIED
2a. SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION /AVAILABILITY OF REPORT
Approved for public release;
2b. DECLASSIFICATION / DOWNGRADING SCHEDULE distribution unlimited
I4A PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING QRGANIZATION REPORT NUMBER(S)
§AFIT/GCS/ENC/89D-1
6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
S - . . (If applicable)
] chool of Engineering AFIT/ENA
6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

Air rforce Institute of Technology
Wright-Patterson AFR, Ohio 45433

8a. NAME OF FUNDING / SPONSORING 8b OFFICE SYMBOL |9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)
WSDIO F :ze 1 Program Orfic S,/PI
8c ADDRESS ~- State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
oz PROGRAM PROJECT TASK WORK UNIT
The Pentzzon ELEMENT NO. | NO. NO ACCESSION NO

Washington, D.C. 20301-7100

s

11. TITLE (Include Security Classification)
AN 0z2JECT ORIENTZD ANALYSIS [ETHOD FOR Ada AND EMBEDDED SYSTEMS - UNCLASSIFIED

-

12. PERSONAL AUTHOR(S)

Steven G. iarch, Capt, USAF

13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day)]15. PAGE COUNT
5 Thesis FROM TO 1989 December 2LC

16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SU8-GROUP Softwars Engineering, Computer systems analysis
12 03 Computer program documentation

‘19'ABSTRACT {Continue on reverse if necessary and identify by block number)

“nesis Chalrman: David A. Umphress, Maj, USAF
Assistant Professor of Mathematics and Computer Science

Azstract: See Heverse

20. OISTRIBUTION / AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION
B uncLasSiFiEDUNUMITED [SAME AS RPT O omnc users | UNCLASSIFIED
zzf NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Area Code) | 22c OFFICE SYMBOL
Jaj David A. Umphress (513) 255-3098 AFIT/ENC
DO Form 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED

_

Obvject-Oriented Design (00D) has become a popular
approach to software development with Ada. One of the
difficulties in applying 00D is that the information avail-
able to the designer (the product of requirements analysis)
15 typicaliy paesentea in a lorw inzppropriate to CCD.
Traditional requirements analysis tools (e.g. data flow
diagrams) organize the software requirements based upon the
Tfunctions the system must perform. Recent research suggests
that an object-oriented approach to requirements analysis
is a more natural lead-in to 00D.

The goal of this thesls was to define the tools, steps,
and heuristics for an object-oriented analysis (00A) method
of modeling software requirements. The choice of tools
used to capture the requirements makes the method parti-
cularly suitable for use when developing embedded systems.
The method emphasizes communication with both the domain
expert and the designer.

The 00A method consists of two phases. The objective
of the firse phase is to capture the software requirements
using unstructured tools such as concept maps, storyboards,
and a list of external events to which the system must re-
spond. The second phase involves structuring these require-
ments into a model based upon the software objects.

The thesis also addressed the possibiiity of automated
support for the O0OA method, and proposes an 00A tool to
assist the analyst. The OOA method was applied to a sample
requirements analysis problem to demonstrate the method's
feasibility.

